Course detail
Mathematics - Selected Topics II
FSI-T2KAcad. year: 2011/2012
The course familiarises students with fundamentals of the complex variable analysis. It gives information about elementary functions of complex variable, about derivative and the theory of analytic functions, conform mapping, and integration of complex variable functions
including the theory of residua.
Language of instruction
Number of ECTS credits
Mode of study
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Exam has a written and an oral part.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Druckmüller, M., Ženíšek, A.: Funkce komplexní proměnné, PC-Dir Real, Brno 2000
Šulista, M.: Základy analýzy v komplexním oboru, Stát.nakl.techn.lit., Praha 1981
Recommended reading
Druckmüller, M., Ženíšek, A.: Funkce komplexní proměnné, PC-Dir Real, Brno 2000 proměnné, PC-Dir Real, Brno 2000
Šulista, M.: Analýza v komplexním oboru, Stát.nakl.techn.lit., Praha 1986
Šulista, M.: Základy analýzy v komplexním oboru, Stát.nakl.techn.lit., Praha 1981
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Functions of complex variable, limit, continuity, elementary
functions
3. Series and rows of complex numbers
4. Curves
5. Derivative, holomorphy functions, harmonic functions
6. Series and rows of complex functions, power set
7. Integral of complex function
8. Cauchy's theorem, Cauchy's integral formula
9. Laurent set
10. Isolated singular points of holomorphy functions
11. Residua
12. Using of residua
13. Conformal mapping
Exercise
Teacher / Lecturer
Syllabus
2. Functions of complex variable, limit, continuity, elementary
functions
3. Series and rows of complex numbers
4. Curves
5. Derivative, holomorphy functions, harmonic functions
6. Series and rows of complex functions, power set
7. Integral of complex function
8. Cauchy's theorem, Cauchy's integral formula
9. Laurent set
10. Isolated singular points of holomorphy functions
11. Integration using residua theory
12. Using of residua
13. Test