Course detail

Analogue electronic circuits

FEKT-BAEYAcad. year: 2011/2012

Basic circuits of modern analogue technology with the emphasis on the combination of intuitive and computer aided analysis and design.
Linear, nonlinear and parametric circuits, spectrum modification.
Transistor- and OpAmp-based amplifiers.
Feedback and stability.
Frequency filters.
RC oscillators.
Nonlinear applications.
Selected analogue integrated circuits.

Language of instruction

Czech

Number of ECTS credits

7

Mode of study

Not applicable.

Learning outcomes of the course unit

The students acquire basic knowledge about modern analogue circuits, discrete and integrated.They will understand their physical function and cooperation with other circuits. and applications. They acquaint with the typical circuit applications and with basic procedures of their analysis and design.

Prerequisites

The subject knowledge on the secondary school level is required.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Up to 30 points for the activity during the semester.
Up to 70 points for exam.

Course curriculum

1) Linear, nonlinear and parametric circuits. Spectrum modification via the signal passing through a circuit.
2) General properties of linera circuits.
3) Amplifiers and feedback.
4) Transistor circuits I.
5) Transistor circuits II.
6) Operational Amplifiers (OpAmps) of VFA type.
7) OpAmp linear applications.
8) OpAmp nonlinear applications.
9) Other modern active elements.
10) Applications of active elements.
11) Frequencz filters.
12) RC oscillators.
13) Voltage references.

Work placements

Not applicable.

Aims

The aim of this course is to make students familiar with the state of the art of analogue technology by a suitable combination of theory, intuition, and computer simulation. The subject respects the fact of the co-existence of discrete circuits and permanently increasing amount of integrated circuits.

Specification of controlled education, way of implementation and compensation for absences

The content and form of controlled classwork as well as the way of its execution are specified by a regulation issued and yearly updated by the guarantee of the course.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

BIOLEK, D. Analogové elektronické obvody - P. Elektronické učební texty, UMEL FEKT VUT Brno, 2007. (CS)
BIOLEK, D. Analogové elektronické obvody -L. Elektronické učební texty, UMEL FEKT VUT Brno, 2003. (CS)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EEKR-B Bachelor's

    branch B-MET , 2. year of study, winter semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, winter semester, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

Linear, nelinear and parametric circuits, spectrum transformation
Rectifiers, smoothing filters
Passive stabilizers
Voltage and power amplifiers
Feedback and stability of amplifiers
LC and RC oscillators
Mixers
Modulators and demodulators
Basic blocks of analogue integrated circuits
Operational amplifiers
Operational networks
Integrated stabilizers and lf power amplifiers
A/D and D/A converters

Fundamentals seminar

12 hours, optionally

Teacher / Lecturer

Syllabus

Opening lesson
Operating point and its motion - design of amplifiers containing BJT and MOSFETs
Verifying OpAmp basic features
OpAmp networks
Operational rectifiers
Astable Flip-Flops and signal generators

Exercise in computer lab

14 hours, compulsory

Teacher / Lecturer

Syllabus

MicroCap simulation:

Opening lesson
Operating point and its motion
Verifying OpAmp basic features
OpAmp networks
Operational rectifiers
Astable Flip-Flops and signal generators

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer

Syllabus

Opening lesson
Operating point and its motion
Verifying OpAmp basic features
OpAmp networks
Operational rectifiers
Astable Flip-Flops and signal generators