Přístupnostní navigace
E-application
Search Search Close
Detail publikačního výsledku
DOUPOVEC, M.; KUREK, J.; MIKULSKI, W.
Original Title
On Weil like functors on flag vector bundles with given length
English Title
Type
WoS Article
Original Abstract
Let kappa >= 2 be a fixed natural number. The complete description is given of the product preserving gauge bundle functors F on the category F kappa VB of flag vector bundles K = (K; K1, ... , K kappa) of length kappa in terms of the systems I = (I1, ... , I kappa-1) of A-module homomorphisms Ii : Vi+1 -> Vi for Weil algebras A and finite dimensional (over R) A-modules V1, ... , V kappa. The so called iteration problem is investigated. The natural affinors on FK are classified. The gauge-natural operators C lifting kappa-flag-linear (i.e. with the flow in F kappa VB) vector fields X on K to vector fields C(X) on FK are completely described. The concept of the complete lift F phi of a kappa-flag-linear semi-basic tangent valued p-form phi on K is introduced. That the complete lift F phi preserves the Fro center dot licher-Nijenhuis bracket is deduced. The obtained results are applied to study prolongation and torsion of kappa-flag-linear connections.
English abstract
Keywords
product preserving gauge bundle functor;natural transformation;Weil algebra;flag-linear vector bundle;flag-linear semi-basic tangent valued p-form;complete lifting;Fro?licher-Nijenhuis bracket;flag-linear connection
Key words in English
Authors
RIV year
2024
Released
31.03.2023
Publisher
Faculty of Sciences and Mathematics, University of Niš, Serbia
Location
Serbia
ISBN
0354-5180
Periodical
Filomat
Volume
37
Number
9
State
Republic of Serbia
Pages from
2755
Pages to
2771
Pages count
17
URL
https://www.pmf.ni.ac.rs/filomat-content/2023/37-9/37-9-9-18390.pdf
Full text in the Digital Library
http://hdl.handle.net/
BibTex
@article{BUT183286, author="Miroslav {Doupovec} and Jan {Kurek} and Wlodzimierz {Mikulski}", title="On Weil like functors on flag vector bundles with given length", journal="Filomat", year="2023", volume="37", number="9", pages="2755--2771", doi="10.2298/FIL2309755D", issn="0354-5180", url="https://www.pmf.ni.ac.rs/filomat-content/2023/37-9/37-9-9-18390.pdf" }