Publication detail

High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powders

ČELKO, L. TKACHENKO, S. CASAS LUNA, M. DYČKOVÁ, L. BEDNAŘÍKOVÁ, V. REMEŠOVÁ, M. KOMAROV, P. DEÁK, A. BALÁŽ, M. CRAWFORD, D. DÍAZ DE LA TORRE, S. BODOKI, E. CIHLÁŘ, J.

Original Title

High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powders

Type

journal article in Web of Science

Language

English

Original Abstract

The current study is focused on the preparation of Mo-10 vol%La2O3 and Mo-10 vol% La2Zr2O7 composite powders via low- and high-energy ball milling approaches as potential candidates for near-future high-temperature structural applications. The mechanical milling parameters play a critical role on the final powder's microstructure. When using the high-energy milling mode (using 800 rpm, ball-to-powder ratio (BPR) 100: 6), the homogeneous powder agglomerates are formed with refined laminated microstructure and more uniform ceramic phase distribution in both Mo-La2O3 and Mo-La2Zr2O7 systems compared to the powders produced by means of the low-energy milling mode (using 350 rpm, BPR 100: 6), where inhomogeneous powder mixture with less embedding of ceramic phases into Mo agglomerates was obtained. This study also focuses on the evaluation of high-temperature phase and microstructural stability of the produced composite powders treated at the temperature of 1300 degrees C under the different gaseous environments, including ambient, inert and reducing atmospheres. The Mo-10 vol% La2Zr2O7 composite powder exhibited better thermal stability during the high-temperature exposure in all tested atmospheres in comparison with the Mo-La2O3 composite powder, since it revealed less intensive formation of the intermediate phases, such as lanthanum oxymolybdates. Therefore, the Mo-10 vol%La2Zr2O7 composite powder was used further for consolidation by means of spark plasma sintering at 1600 degrees C. The successful production of Mo-La2Zr2O7 composite with homogeneous distribution of ceramic phase, the grain size about of 5 mu m, and hardness of 3.4 GPa was not reported so far.

Keywords

Molybdenum; Lanthanum oxide; Lanthanum zirconium oxide; High-energy milling; Thermal stability; Spark plasma sintering

Authors

ČELKO, L.; TKACHENKO, S.; CASAS LUNA, M.; DYČKOVÁ, L.; BEDNAŘÍKOVÁ, V.; REMEŠOVÁ, M.; KOMAROV, P.; DEÁK, A.; BALÁŽ, M.; CRAWFORD, D.; DÍAZ DE LA TORRE, S.; BODOKI, E.; CIHLÁŘ, J.

Released

1. 1. 2022

Publisher

Elsevier

Location

OXFORD

ISBN

0263-4368

Periodical

INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS

Year of study

102

Number

1

State

United Kingdom of Great Britain and Northern Ireland

Pages from

1

Pages to

13

Pages count

13

URL

Full text in the Digital Library

BibTex

@article{BUT176090,
  author="Ladislav {Čelko} and Serhii {Tkachenko} and Mariano {Casas Luna} and Lucie {Dyčková} and Vendula {Bednaříková} and Michaela {Remešová} and Pavel {Komarov} and Andréa {Deák} and Matej {Baláž} and Deborah E. {Crawford} and Sebastian {Díaz de la Torre} and Ede {Bodoki} and Jaroslav {Cihlář}",
  title="High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powders",
  journal="INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS",
  year="2022",
  volume="102",
  number="1",
  pages="1--13",
  doi="10.1016/j.ijrmhm.2021.105717",
  issn="0263-4368",
  url="https://www.sciencedirect.com/science/article/pii/S0263436821002493"
}