Přístupnostní navigace
E-application
Search Search Close
Publication result detail
DIBLÍK, J.; SCHMEIDEL, E.
Original Title
On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence
English Title
Type
Peer-reviewed article not indexed in WoS or Scopus
Original Abstract
Schauder's fixed point technique is applied to asymptotical analysis of solutions of a linear Volterra difference equation $$ x(n+1)=a(n)+b(n)x(n)+\sum\limits^{n}_{i=0}K(n,i)x(i) $$ where $n\in \bN_0$, $x\colon\bN_0\to\bR$, $a\colon \bN_0\to\bR$, $K\colon\bN_0\times\bN_0\to \bR$, and $b\colon\bN_0 \to \bR\setminus\{0\}$ is $\omega$-periodic. In the paper, sufficient conditions are derived for the validity of a property of solutions that, for every admissible constant $c\in \bR$, there exists a solution $x=x(n)$ such that $$ {x(n){\sim}}\left(c+\sum\limits_{i=0}^{n-1}\frac{a(i)}{\beta(i+1)}\right)\beta(n),$$ where $\beta(n)=\prod\limits_{j=0}^{n-1}b(j)$, for $n\to\infty$ and inequalities for solutions are derived. Relevant comparisons and illustrative examples are given as well.
English abstract
Keywords
Linear Volterra difference equation, asymptotic formula, asymptotic equivalence
Key words in English
Authors
RIV year
2013
Released
17.04.2012
Publisher
Elsevier Science Publishing Co
Location
USA
ISBN
0096-3003
Periodical
APPLIED MATHEMATICS AND COMPUTATION
Volume
2012
Number
18
State
United States of America
Pages from
9310
Pages to
9320
Pages count
11
BibTex
@article{BUT90950, author="Josef {Diblík} and Ewa {Schmeidel}", title="On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2012", volume="2012", number="18", pages="9310--9320", issn="0096-3003" }