Přístupnostní navigace
E-application
Search Search Close
Publication result detail
BURŠA, J.; HOLATA, J.; LEBIŠ, R.
Original Title
Tensegrity finite element models of mechanical tests of individual cells
English Title
Type
Peer-reviewed article not indexed in WoS or Scopus
Original Abstract
A three-dimensional finite element model of a vascular smooth muscle cell is based on models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing the cytoskeleton. In contrast to previous models of eucaryotic cells, this tensegrity structure consists of several parts. Its external and internal parts number 30 struts, 60 cables each, and their nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate load transmission from the extracellular space to the nucleus or centrosome via membrane receptors (focal adhesions); the ability of the model was tested by simulation of some mechanical tests with isolated vascular smooth muscle cells. Although material properties of components defined on the basis of the mechanical tests are ambiguous, modelling of different types of tests has shown the ability of the model to simulate substantial global features of cell behaviour, e.g. action at a distance effect or the global load-deformation response of the cell under various types of loading. Based on computational simulations, the authors offer a hypothesis explaining the scatter of experimental results of indentation tests.
English abstract
Keywords
Cell biomechanics; Tensegrity structure; Cytoskeleton; Computational model
Key words in English
Authors
RIV year
2013
Released
16.04.2012
Publisher
Elsevier Science B.V.
Location
Amsterdam
ISBN
0928-7329
Periodical
TECHNOLOGY AND HEALTH CARE
Volume
20
Number
2
State
Kingdom of the Netherlands
Pages from
135
Pages to
150
Pages count
16
BibTex
@article{BUT88700, author="Jiří {Burša} and Jakub {Holata} and Radek {Lebiš}", title="Tensegrity finite element models of mechanical tests of individual cells", journal="TECHNOLOGY AND HEALTH CARE", year="2012", volume="20", number="2", pages="135--150", issn="0928-7329" }