Přístupnostní navigace
E-application
Search Search Close
Publication result detail
POVEY, D.; BURGET, L.; AGARWAL, M.; AKYAZI, P.; GHOSHAL, A.; GLEMBEK, O.; GOEL, N.; KARAFIÁT, M.; RASTROW, A.; ROSE, R.; SCHWARZ, P.; THOMAS, S.
Original Title
The subspace Gaussian mixture model-A structured model for speech recognition
English Title
Type
WoS Article
Original Abstract
Speech recognition based on the Hidden Markov Model-Gaussian Mixture Model (HMM-GMM) framework generally involves training a completely separate GMM in each HMM state.We introduce a model in which the HMM states share a common structure but the means and mixture weights are allowed to vary in a subspace of the full parameter space, controlled by a global mapping from a vector space to the space of GMM parameters.
English abstract
Keywords
Speech recognition; Gaussian Mixture Model; Subspace Gaussian Mixture Model
Key words in English
Authors
RIV year
2012
Released
01.04.2011
Publisher
Elsevier Science
Book
Computer Speech & Language, Volume 25, Issue 2, April 2011
ISBN
0885-2308
Periodical
COMPUTER SPEECH AND LANGUAGE
Volume
25
Number
2
State
United Kingdom of Great Britain and Northern Ireland
Pages from
404
Pages to
439
Pages count
36
URL
https://www.fit.vut.cz/research/publication/9670/
BibTex
@article{BUT76383, author="Daniel {Povey} and Lukáš {Burget} and Mohit {Agarwal} and Pinar {Akyazi} and Arnab {Ghoshal} and Ondřej {Glembek} and Nagendra {Goel} and Martin {Karafiát} and Ariya {Rastrow} and Richard {Rose} and Petr {Schwarz} and Samuel {Thomas}", title="The subspace Gaussian mixture model-A structured model for speech recognition", journal="COMPUTER SPEECH AND LANGUAGE", year="2011", volume="25", number="2", pages="404--439", issn="0885-2308", url="https://www.fit.vut.cz/research/publication/9670/" }