Detail publikačního výsledku

On the mapping of jet spaces.

TRYHUK, V.; CHRASTINOVÁ, V.

Original Title

On the mapping of jet spaces.

English Title

On the mapping of jet spaces.

Type

Peer-reviewed article not indexed in WoS or Scopus

Original Abstract

Any locally invertible morphism of a~finite--order jet space is either a~prolonged point transformation or a~prolonged Lie's contact transformation (the Lie--B\"acklund theorem). We recall this classical result with a~simple proof and moreover determine explicit formulae even for all (not necessarily invertible) morphisms of finite--order jet spaces. Examples of generalized (higher--order) contact transformations of jets that destroy all finite--order jet subspaces are stated with comments.

English abstract

Any locally invertible morphism of a~finite--order jet space is either a~prolonged point transformation or a~prolonged Lie's contact transformation (the Lie--B\"acklund theorem). We recall this classical result with a~simple proof and moreover determine explicit formulae even for all (not necessarily invertible) morphisms of finite--order jet spaces. Examples of generalized (higher--order) contact transformations of jets that destroy all finite--order jet subspaces are stated with comments.

Keywords

Infinite--order jet spaces, morphisms of jets, generalized contact transformations, Lie--B\"acklund theorem.

Key words in English

Infinite--order jet spaces, morphisms of jets, generalized contact transformations, Lie--B\"acklund theorem.

Authors

TRYHUK, V.; CHRASTINOVÁ, V.

RIV year

2011

Released

01.09.2010

Publisher

World Scientific

Location

Švédsko

ISBN

1402-9251

Periodical

JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS

Volume

17

Number

3

State

Republic of Singapore

Pages from

293

Pages to

310

Pages count

18

Full text in the Digital Library

BibTex

@article{BUT50992,
  author="Václav {Tryhuk} and Veronika {Chrastinová}",
  title="On the mapping of jet spaces.",
  journal="JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS",
  year="2010",
  volume="17",
  number="3",
  pages="293--310",
  issn="1402-9251"
}