Detail publikačního výsledku

Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions

PŘIBYL, O.; STANĚK, S.

Original Title

Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions

English Title

Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions

Type

Peer-reviewed article not indexed in WoS or Scopus

Original Abstract

The singular boundary value problem $(\phi(x'))' + \mu f(t,x,x')=0$, $x(0)+x(T)=0$, $x'(0)+x'(T)=0$, $\max\{x(t): 0 \le t \le T\}=A$ depending on the parameter $\mu$ is considered. Here the function $f$ satisfies local Carath\'eodory conditions on $[0,T] \times (\R\setminus \{0\})^2$ and $f$ may be singular at the zero value of its phase variables. The paper presents conditions which guarantee that for any $A>0$ there exists $\mu_A >0$ such that the above problem with $\mu=\mu_A$ has a solution. The proofs are based on regularization and sequential techniques and use the Leray-Schauder degree.

English abstract

The singular boundary value problem $(\phi(x'))' + \mu f(t,x,x')=0$, $x(0)+x(T)=0$, $x'(0)+x'(T)=0$, $\max\{x(t): 0 \le t \le T\}=A$ depending on the parameter $\mu$ is considered. Here the function $f$ satisfies local Carath\'eodory conditions on $[0,T] \times (\R\setminus \{0\})^2$ and $f$ may be singular at the zero value of its phase variables. The paper presents conditions which guarantee that for any $A>0$ there exists $\mu_A >0$ such that the above problem with $\mu=\mu_A$ has a solution. The proofs are based on regularization and sequential techniques and use the Leray-Schauder degree.

Keywords

Singular boundary value problem, antiperiodic boundary conditions, dependence on a parameter, $\phi$-Laplacian, existence, Leray-Schauder degree.

Key words in English

Singular boundary value problem, antiperiodic boundary conditions, dependence on a parameter, $\phi$-Laplacian, existence, Leray-Schauder degree.

Authors

PŘIBYL, O.; STANĚK, S.

Released

01.06.2007

Publisher

Functional Differential Equations

ISBN

0793-1786

Periodical

Functional Differential Equations

Volume

14

Number

2/4

State

State of Israel

Pages from

103

Pages to

114

Pages count

12

Full text in the Digital Library

BibTex

@article{BUT44364,
  author="Oto {Přibyl} and Svatoslav {Staněk}",
  title="Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions",
  journal="Functional Differential Equations",
  year="2007",
  volume="14",
  number="2/4",
  pages="103--114",
  issn="0793-1786"
}