Přístupnostní navigace
E-application
Search Search Close
Publication result detail
NOHEL, M.; ULRICH, C.; SUPRIJADI, J.; WALD, T.; MAIER-HEIN, K.
Original Title
Unified Framework for Foreground and Anonymization Area Segmentation in CT and MRI Data
English Title
Type
Paper in proceedings (conference paper)
Original Abstract
This study presents an open-source toolkit to address critical challenges in preprocessing data for self-supervised learning (SSL) for 3D medical imaging, focusing on data privacy and computational efficiency. The toolkit comprises two main components: a segmentation network that delineates foreground regions to optimize data sampling and thus reduce training time, and a segmentation network that identifies anonymized regions, preventing erroneous supervision in reconstruction-based SSL methods. Experimental results demonstrate high robustness, with mean Dice scores exceeding 98.5 across all anonymization methods and surpassing 99.5 for foreground segmentation tasks, highlighting the toolkit’s efficacy in supporting SSL applications in 3D medical imaging for both CT and MRI images. The weights and code is available at https://github.com/MIC-DKFZ/Foreground-and-Anonymization-Area-Segmentation.
English abstract
Keywords
segmentation
Key words in English
Authors
Released
02.03.2025
Publisher
Springer Vieweg
Location
Wiesbaden
ISBN
978-3-658-47421-8
Book
Bildverarbeitung für die Medizin 2025
Periodical
Informatik aktuell
State
Federal Republic of Germany
Pages from
242
Pages to
247
Pages count
6
URL
https://link.springer.com/chapter/10.1007/978-3-658-47422-5_53
BibTex
@inproceedings{BUT197344, author="Michal {Nohel} and Constantin {Ulrich} and Jonathan {Suprijadi} and Tassilo {Wald} and Klaus {Maier-Hein}", title="Unified Framework for Foreground and Anonymization Area Segmentation in CT and MRI Data", booktitle="Bildverarbeitung für die Medizin 2025", year="2025", journal="Informatik aktuell", pages="242--247", publisher="Springer Vieweg", address="Wiesbaden", doi="10.1007/978-3-658-47422-5\{_}53", isbn="978-3-658-47421-8", issn="1431-472X", url="https://link.springer.com/chapter/10.1007/978-3-658-47422-5_53" }