Přístupnostní navigace
E-application
Search Search Close
Publication result detail
MOKRÝ, O.; VITOUŠ, J.; RAJMIC, P.; JIŘÍK, R.
Original Title
Improving DCE-MRI through Unfolded Low-Rank + Sparse Optimisation
English Title
Type
Paper in proceedings (conference paper)
Original Abstract
A method for perfusion imaging with DCE-MRI is developed based on a combination of two popular paradigms: the low-rank + sparse model for optimisation-based reconstruction, and the deep unfolding. A learnable algorithm derived from a proximal method is designed with emphasis on simplicity and interpretability. The resulting deep network is trained and evaluated using a simulated measurement of a rat with a brain tumor, showing large performance gain over the classical low-rank + sparse baseline. Moreover, a quantitative perfusion analysis is performed based on the reconstructed sequence, proving that even training based on a simple pixel-wise error can lead to a significant improvement of the quality of the perfusion maps.
English abstract
Keywords
DCE-MRI; proximal splitting algorithms; deep unfolding; L+S model; perfusion analysis
Key words in English
Authors
RIV year
2025
Released
27.05.2024
Publisher
IEEE
Location
Athens, Greece
ISBN
979-8-3503-1333-8
Book
2024 IEEE International Symposium on Biomedical Imaging (ISBI)
Pages count
5
URL
https://ieeexplore.ieee.org/document/10635295/
Full text in the Digital Library
http://hdl.handle.net/
BibTex
@inproceedings{BUT189442, author="Ondřej {Mokrý} and Jiří {Vitouš} and Pavel {Rajmic} and Radovan {Jiřík}", title="Improving DCE-MRI through Unfolded Low-Rank + Sparse Optimisation", booktitle="2024 IEEE International Symposium on Biomedical Imaging (ISBI)", year="2024", pages="5", publisher="IEEE", address="Athens, Greece", doi="10.1109/ISBI56570.2024.10635295", isbn="979-8-3503-1333-8", url="https://ieeexplore.ieee.org/document/10635295/" }