Přístupnostní navigace
E-application
Search Search Close
Publication result detail
RAICHL, P.; MARCOŇ, P.; JANOUŠEK, J.
Original Title
Obstacle Avoidance in UAVs: Using a Bug-Inspired Algorithm and Neural Network-Based RGB Camera Collision Prediction
English Title
Type
Paper in proceedings outside WoS and Scopus
Original Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly deployed in complex environments for various applications, necessitating advanced obstacle avoidance capabilities to ensure safety and mission success. Inspired by the simplicity and effectiveness of biological navigation strategies, this study introduces a novel approach to UAV obstacle avoidance, leveraging the principles of the bug algorithm combined with the predictive power of neural networks. We propose a hybrid model that integrates a lightweight neural network to predict potential collisions in real-time. Our methodology employs a two-stage process: first, the neural network assesses the immediate risk of collision; second, the bug algorithm-inspired decision-making process determines the UAV’s maneuvering actions to navigate without crashing to obstacles. The approach was tested both in simulation and real outdoor experiments.
English abstract
Keywords
UAV, Obstacle avoidance, Collision Prediction, Artificial Intelligence, Neural Networks
Key words in English
Authors
Released
23.04.2024
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-6231-1
Book
Proceedings I of the 30th Conference STUDENT EEICT 2024
Pages from
327
Pages to
331
Pages count
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf
BibTex
@inproceedings{BUT189116, author="Petr {Raichl} and Petr {Marcoň} and Jiří {Janoušek}", title="Obstacle Avoidance in UAVs: Using a Bug-Inspired Algorithm and Neural Network-Based RGB Camera Collision Prediction", booktitle="Proceedings I of the 30th Conference STUDENT EEICT 2024", year="2024", pages="327--331", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-6231-1", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf" }