Publication result detail

Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity

ZUO, J.; ZHANG, W.; RADULESCU, V.

Original Title

Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity

English Title

Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity

Type

WoS Article

Original Abstract

n this paper, we study the following (p,q)-Kirchhoff problem with Choquard nonlinearity: −(1+a∫RN|∇u|pdx)Δpu−(1+b∫RN|∇u|qdx)Δqu+Vε(x)(|u|p−2u+|u|q−2u)=(|x|−μ⁎F(u))f(u)inRN, where ε is a small positive parameter, a,b are positive constants, 1

English abstract

n this paper, we study the following (p,q)-Kirchhoff problem with Choquard nonlinearity: −(1+a∫RN|∇u|pdx)Δpu−(1+b∫RN|∇u|qdx)Δqu+Vε(x)(|u|p−2u+|u|q−2u)=(|x|−μ⁎F(u))f(u)inRN, where ε is a small positive parameter, a,b are positive constants, 1

Keywords

(p,q)-Laplacian; Choquard nonlinearity; Ljusternik-Schnirelmann theory; Multiplicity; Penalization technique

Key words in English

(p,q)-Laplacian; Choquard nonlinearity; Ljusternik-Schnirelmann theory; Multiplicity; Penalization technique

Authors

ZUO, J.; ZHANG, W.; RADULESCU, V.

RIV year

2025

Released

20.04.2024

ISBN

0007-4497

Periodical

BULLETIN DES SCIENCES MATHEMATIQUES

Volume

191

Number

103398

State

Kingdom of the Netherlands

Pages count

35

URL

BibTex

@article{BUT188259,
  author="Jiabin {Zuo} and Weiqiang {zhang} and Vicentiu {Radulescu}",
  title="Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity",
  journal="BULLETIN DES SCIENCES MATHEMATIQUES",
  year="2024",
  volume="191",
  number="103398",
  pages="35",
  doi="10.1016/j.bulsci.2024.103398",
  issn="0007-4497",
  url="https://www.webofscience.com/wos/woscc/full-record/WOS:001200435100001"
}