Detail publikačního výsledku

Security Implications of Deepfakes in Face Authentication

ŠALKO, M.; FIRC, A.; MALINKA, K.

Original Title

Security Implications of Deepfakes in Face Authentication

English Title

Security Implications of Deepfakes in Face Authentication

Type

Paper in proceedings (conference paper)

Original Abstract

Deepfakes are media generated by deep learning and are nearly indistinguishable from real content to humans. Deepfakes have seen a significant surge in popularity in recent years. There have been numerous papers discussing their effectiveness in deceiving people. What's equally, if not more concerning, is the potential vulnerability of facial and voice recognition systems to deepfakes. The misuse of deepfakes to spoof automated facial recognition systems can threaten various aspects of our lives, including financial security and access to secure locations. This issue remains largely unexplored. Thus, this paper investigates the technical feasibility of a spoofing attack on facial recognition. Firstly, we perform a threat analysis to understand what facial recognition use cases allow the execution of deepfake spoofing attacks. Based on this analysis, we define the attacker model for these attacks on facial recognition systems. Then, we demonstrate the ability of deepfakes to spoof two commercial facial recognition systems. Finally, we discuss possible means to prevent such spoofing attacks.

English abstract

Deepfakes are media generated by deep learning and are nearly indistinguishable from real content to humans. Deepfakes have seen a significant surge in popularity in recent years. There have been numerous papers discussing their effectiveness in deceiving people. What's equally, if not more concerning, is the potential vulnerability of facial and voice recognition systems to deepfakes. The misuse of deepfakes to spoof automated facial recognition systems can threaten various aspects of our lives, including financial security and access to secure locations. This issue remains largely unexplored. Thus, this paper investigates the technical feasibility of a spoofing attack on facial recognition. Firstly, we perform a threat analysis to understand what facial recognition use cases allow the execution of deepfake spoofing attacks. Based on this analysis, we define the attacker model for these attacks on facial recognition systems. Then, we demonstrate the ability of deepfakes to spoof two commercial facial recognition systems. Finally, we discuss possible means to prevent such spoofing attacks.

Keywords

deepfake, facial recognition, biometrics systems, machine learning, computer security

Key words in English

deepfake, facial recognition, biometrics systems, machine learning, computer security

Authors

ŠALKO, M.; FIRC, A.; MALINKA, K.

RIV year

2025

Released

08.04.2024

Publisher

Association for Computing Machinery

Location

Avila

ISBN

979-8-4007-0243-3

Book

Proceedings of the ACM Symposium on Applied Computing

Pages from

1376

Pages to

1384

Pages count

9

URL

Full text in the Digital Library

BibTex

@inproceedings{BUT188029,
  author="Milan {Šalko} and Anton {Firc} and Kamil {Malinka}",
  title="Security Implications of Deepfakes in Face Authentication",
  booktitle="Proceedings of the ACM Symposium on Applied Computing",
  year="2024",
  pages="1376--1384",
  publisher="Association for Computing Machinery",
  address="Avila",
  doi="10.1145/3605098.3635953",
  isbn="979-8-4007-0243-3",
  url="https://dl.acm.org/doi/10.1145/3605098.3635953"
}

Documents