Přístupnostní navigace
E-application
Search Search Close
Publication result detail
BEREZANSKY, L.; DIBLÍK, J.; SVOBODA, Z.; ŠMARDA, Z.
Original Title
Exponential stability criteria for linear neutral systems with applications to neural networks of neutral type
English Title
Type
WoS Article
Original Abstract
Linear neutral vector equations are considered on interval [0, infinity). Here x = (x(1),...,x(n))(T), m is a positive integer, the entries of matrices A(l), l = 0,...,m, P, and the delays h(k), k = 0,...,m, g are assumed to be Lebesgue measurable functions. New explicit criteria are derived on uniform exponential stability. Comparisons are made and discussed based on an overview of the existing results. An application is presented to local exponential stability of non-autonomous neural network models of neutral type.
English abstract
Keywords
Functional differential equations; time-delay; neural networks
Key words in English
Authors
RIV year
2024
Released
27.01.2023
ISBN
0016-0032
Periodical
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS
Volume
360
Number
1
State
United States of America
Pages from
301
Pages to
326
Pages count
25
URL
https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001088958900001
BibTex
@article{BUT185104, author="Leonid {Berezansky} and Josef {Diblík} and Zdeněk {Svoboda} and Zdeněk {Šmarda}", title="Exponential stability criteria for linear neutral systems with applications to neural networks of neutral type", journal="JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS", year="2023", volume="360", number="1", pages="301--326", doi="10.1016/j.jfranklin.2022.11.012", issn="0016-0032", url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001088958900001" }