Přístupnostní navigace
E-application
Search Search Close
Publication result detail
HRDINA, J.; VAŠÍK, P.; NÁVRAT, A.; ERYGANOV, I.; HILDENBRAND, D.; ALVES, R.; LAVOR, C.; STEINMETZ, C.
Original Title
Quantum Register Algebra: the mathematical language for quantum computing
English Title
Type
WoS Article
Original Abstract
We present Quantum Register Algebra (QRA) as an efficient tool for quantum computing. We show the direct link between QRA and Dirac formalism. We present Geometric Algebra Algorithms Optimizer (GAALOP) implementation of our approach. We demonstrate the ability to fully describe and compute with QRA in GAALOP using the geometric product.
English abstract
Keywords
Quantum computing; Geometric Algebra; Quantum Register Algebra
Key words in English
Authors
RIV year
2024
Released
31.08.2023
Publisher
SPRINGER
Location
NEW YORK
ISBN
1573-1332
Periodical
Quantum Information Processing
Volume
22
Number
9
State
United States of America
Pages from
1
Pages to
27
Pages count
URL
https://link.springer.com//article/10.1007/s11128-023-04086-y
BibTex
@article{BUT184576, author="Jaroslav {Hrdina} and Petr {Vašík} and Aleš {Návrat} and Ivan {Eryganov} and Dietmar {Hildenbrand} and Rafael {Alves} and Carlile C. {Lavor} and Christian {Steinmetz}", title="Quantum Register Algebra: the mathematical language for quantum computing", journal="Quantum Information Processing", year="2023", volume="22", number="9", pages="1--27", doi="10.1007/s11128-023-04086-y", issn="1570-0755", url="https://link.springer.com//article/10.1007/s11128-023-04086-y" }