Přístupnostní navigace
E-application
Search Search Close
Publication result detail
BAHROUNI, A.; MISSAOUI, H.; RADULESCU, V.
Original Title
Infinitely many smooth nodal solutions for Orlicz Robin problems
English Title
Type
WoS Article
Original Abstract
In this note, we study a Robin problem driven by the Orlicz g-Laplace operator. In particular, by using a regularity result and Kajikiya's theorem, we prove that the problem has a whole sequence of distinct smooth nodal solutions converging to the trivial one. The analysis is developed in the most general abstract setting that corresponds to Orlicz-Sobolev function spaces.
English abstract
Keywords
Nodal solutions;Orlicz-Sobolev spaces;Robin boundary value;Regularity
Key words in English
Authors
RIV year
2024
Released
17.08.2023
Publisher
Elsevier
ISBN
1873-5452
Periodical
Applied Mathematics Letters
Volume
142
Number
1
State
United States of America
Pages from
Pages to
7
Pages count
URL
https://www.sciencedirect.com/science/article/pii/S0893965923000678
Full text in the Digital Library
http://hdl.handle.net/11012/245041
BibTex
@article{BUT184003, author="Anouar {Bahrouni} and Hlel {Missaoui} and Vicentiu {Radulescu}", title="Infinitely many smooth nodal solutions for Orlicz Robin problems", journal="Applied Mathematics Letters", year="2023", volume="142", number="1", pages="1--7", doi="10.1016/j.aml.2023.108635", issn="0893-9659", url="https://www.sciencedirect.com/science/article/pii/S0893965923000678" }
Documents
1-s2.0-S0893965923000678-main