Přístupnostní navigace
E-application
Search Search Close
Publication result detail
GUAN, W.; RADULESCU, V.; WANG, D.
Original Title
Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
English Title
Type
WoS Article
Original Abstract
We deal with the fractional Choquard equation where I-mu(x) is the Riesz potential, s is an element of (0, 1), 2s< N not equal 4s, 0 < mu < min{N, 4s} and 2* mu,s= 2N- mu/N-2s is the fractional critical Hardy-Littlewood-Sobolev exponent. By combining variational methods and the Brouwer degree theory, we investigate the existence and multiplicity of positive bound solutions to this equation when V(x) is a positive potential bounded from below. The results obtained in this paper extend and improve some recent works in the case where the coefficient V(x) vanishes at infinity.
English abstract
Keywords
GROUND-STATESPOSITIVE SOLUTION;SEXISTENCE;UNIQUENESS
Key words in English
Authors
RIV year
2024
Released
15.05.2023
Publisher
Academic Press Inc.
ISBN
1090-2732
Periodical
Journal of Differential Equations
Volume
2023
Number
355
State
United States of America
Pages from
219
Pages to
247
Pages count
29
URL
https://www.sciencedirect.com/science/article/pii/S002203962300030X
BibTex
@article{BUT183551, author="Wen {Guan} and Vicentiu {Radulescu} and Da-Bin {Wang}", title="Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent", journal="Journal of Differential Equations", year="2023", volume="2023", number="355", pages="219--247", doi="10.1016/j.jde.2023.01.023", issn="0022-0396", url="https://www.sciencedirect.com/science/article/pii/S002203962300030X" }