Přístupnostní navigace
E-application
Search Search Close
Detail publikačního výsledku
VIČAR, T.; JAKUBÍČEK, R.; CHMELÍK, J.; KOLÁŘ, R.
Original Title
Registration of medical image sequences using auto-differentiation
English Title
Type
Paper in proceedings (conference paper)
Original Abstract
This paper focuses on image registration using the automatic differentiation of deep learning frameworks. Specifically, a method for the registration of image sequences is proposed and tested on retinal video ophthalmoscopic data and brain DCE MR images. PyTorch auto-differentiation has been used as a core of an optimisation tool to find the optimal image transformation parameters. It allows us to easily design a loss function for our registration tasks. The image registration was achieved by simultaneous registration of all images using a global loss function without the need of the reference frame.
English abstract
Keywords
medical image registration; auto-differentiation; deep learning frameworks; gradient-based optimisation; video stabilisation
Key words in English
Authors
RIV year
2025
Released
21.12.2023
Publisher
Springer
ISBN
978-981-16-6774-9
Book
Medical Imaging and Computer-Aided Diagnosis: Proceedings of 2022 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)
Edition
1
1876-1100
Periodical
Lecture notes in Electrical Engineering
Volume
810
State
United Kingdom of Great Britain and Northern Ireland
Pages from
169
Pages to
178
Pages count
10
URL
https://link.springer.com/chapter/10.1007/978-981-16-6775-6_15
Full text in the Digital Library
http://hdl.handle.net/
BibTex
@inproceedings{BUT180041, author="Tomáš {Vičar} and Roman {Jakubíček} and Jiří {Chmelík} and Radim {Kolář}", title="Registration of medical image sequences using auto-differentiation", booktitle="Medical Imaging and Computer-Aided Diagnosis: Proceedings of 2022 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)", year="2023", series="1", journal="Lecture notes in Electrical Engineering", volume="810", pages="169--178", publisher="Springer", doi="10.1007/978-981-16-6775-6\{_}15", isbn="978-981-16-6774-9", issn="1876-1100", url="https://link.springer.com/chapter/10.1007/978-981-16-6775-6_15" }