Přístupnostní navigace
E-application
Search Search Close
Detail publikačního výsledku
DIBLÍK, J.; KHUSAINOV, D.; SHATYRKO, A.; BAŠTINEC, J.; SVOBODA, Z.
Original Title
Absolute Stability of Neutral Systems with Lurie Type Nonlinearity
English Title
Type
WoS Article
Original Abstract
The paper studies absolute stability of neutral differential nonlinear systems (x) over dot (t) = Ax (T) + Bx (t - tau) +D(x) over dot (T - tau) + bf (sigma(t)), sigma(t) = c(T) x(t), t >= 0 where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, tau > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.
English abstract
Keywords
Absolute stability; exponential stability; neutral differential system; Lurie type nonlinearity
Key words in English
Authors
RIV year
2022
Released
01.01.2022
Publisher
De Gruyter
ISBN
2191-950X
Periodical
Advances in Nonlinear Analysis
Volume
11
Number
1
State
Federal Republic of Germany
Pages from
726
Pages to
740
Pages count
15
URL
https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html
Full text in the Digital Library
http://hdl.handle.net/11012/203988
BibTex
@article{BUT175471, author="Josef {Diblík} and Denys Ya. {Khusainov} and Andrej {Shatyrko} and Jaromír {Baštinec} and Zdeněk {Svoboda}", title="Absolute Stability of Neutral Systems with Lurie Type Nonlinearity", journal="Advances in Nonlinear Analysis", year="2022", volume="11", number="1", pages="726--740", doi="10.1515/anona-2021-0216", issn="2191-9496", url="https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html" }
Documents
10.1515_anona-2021-0216