Přístupnostní navigace
E-application
Search Search Close
Detail publikačního výsledku
HRDINA, J.; NÁVRAT, A.; ZALABOVÁ, L.
Original Title
Symmetries in geometric control theory using Maple
English Title
Type
WoS Article
Original Abstract
We focus on the role of symmetries in geometric control theory from the Hamiltonian viewpoint. We demonstrate the power of Ian Anderson's package Differential Geometry in CAS software Maple for dealing with control problems on Lie groups. We apply the tools to the problem of vertical rolling disc, however, anyone can modify our approach and tools to other control problems. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
English abstract
Keywords
Geometric control theory; Optimal transport; Sub-Riemannian geometry; Pontryagin's maximum principle; Nilpotent Lie group
Key words in English
Authors
RIV year
2022
Released
01.12.2021
Publisher
ELSEVIER
Location
AMSTERDAM
ISBN
0378-4754
Periodical
MATHEMATICS AND COMPUTERS IN SIMULATION
Volume
190
Number
1
State
Kingdom of the Netherlands
Pages from
474
Pages to
493
Pages count
20
URL
http://10.1016/j.matcom.2021.05.034
Full text in the Digital Library
http://hdl.handle.net/
BibTex
@article{BUT172472, author="Jaroslav {Hrdina} and Aleš {Návrat} and Lenka {Zalabová}", title="Symmetries in geometric control theory using Maple", journal="MATHEMATICS AND COMPUTERS IN SIMULATION", year="2021", volume="190", number="1", pages="474--493", doi="10.1016/j.matcom.2021.05.034", issn="0378-4754", url="http://10.1016/j.matcom.2021.05.034" }