Publication result detail

Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB(R) Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation

VOJTOVÁ, L.; PAVLIŇÁKOVÁ, V.; MUCHOVÁ, J.; KACVINSKÁ, K.; BRTNÍKOVÁ, J.; KNOZ, M.; LIPOVÝ, B.; FALDYNA, M.; GÖPFERT, E.; HOLOUBEK, J.; PAVLOVSKÝ, Z.; VÍCENOVÁ, M.; BLAHNOVÁ, V.; HEARNDEN, V.; FILOVA, E.

Original Title

Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB(R) Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation

English Title

Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB(R) Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation

Type

WoS Article

Original Abstract

Wound healing is a process regulated by a complex interaction of multiple growth factors including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform FGF2 retaining full biological activity even after twenty days at 37 degrees C. Crosslinked freeze-dried 3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein named FGF2-STAB(R) were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31 fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays indicated the positive effect of FGF2-STAB(R) already at very low concentrations (0.01 mu g/mL). The angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds. Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB(R) protein. Moreover, these sponges could be used as scaffolds for growing cells for dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.

English abstract

Wound healing is a process regulated by a complex interaction of multiple growth factors including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform FGF2 retaining full biological activity even after twenty days at 37 degrees C. Crosslinked freeze-dried 3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein named FGF2-STAB(R) were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31 fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays indicated the positive effect of FGF2-STAB(R) already at very low concentrations (0.01 mu g/mL). The angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds. Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB(R) protein. Moreover, these sponges could be used as scaffolds for growing cells for dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.

Keywords

collagen; chitosan; scaffold; FGF2; skin regeneration; tissue engineering

Key words in English

collagen; chitosan; scaffold; FGF2; skin regeneration; tissue engineering

Authors

VOJTOVÁ, L.; PAVLIŇÁKOVÁ, V.; MUCHOVÁ, J.; KACVINSKÁ, K.; BRTNÍKOVÁ, J.; KNOZ, M.; LIPOVÝ, B.; FALDYNA, M.; GÖPFERT, E.; HOLOUBEK, J.; PAVLOVSKÝ, Z.; VÍCENOVÁ, M.; BLAHNOVÁ, V.; HEARNDEN, V.; FILOVA, E.

RIV year

2022

Released

01.06.2021

Publisher

MDPI

Location

BASEL

ISBN

2227-9059

Periodical

Biomedicines

Volume

9

Number

6

State

Swiss Confederation

Pages from

1

Pages to

27

Pages count

27

URL

Full text in the Digital Library

BibTex

@article{BUT171955,
  author="Lucy {Vojtová} and Veronika {Pavliňáková} and Johana {Muchová} and Katarína {Verčimáková} and Jana {Brtníková} and Martin {Knoz} and Břetislav {Lipový} and Martin {Faldyna} and Eduard {Göpfert} and Jakub {Holoubek} and Zdeněk {Pavlovský} and Monika {Vícenová} and Veronika {Blahnová} and Vanessa {Hearnden} and Eva {Filova}",
  title="Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB(R) Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation",
  journal="Biomedicines",
  year="2021",
  volume="9",
  number="6",
  pages="1--27",
  doi="10.3390/biomedicines9060590",
  url="https://www.mdpi.com/2227-9059/9/6/590"
}

Documents