Publication result detail

Data pre-processing effect on classification accuracy of convolutional neural networks for train type identification

KRČ, R.; PODROUŽEK, J.; VUKUŠIČ, I.; PLÁŠEK, O.

Original Title

Data pre-processing effect on classification accuracy of convolutional neural networks for train type identification

English Title

Data pre-processing effect on classification accuracy of convolutional neural networks for train type identification

Type

Paper in proceedings outside WoS and Scopus

Original Abstract

Accelerometer data collected by in-situ measurements near the common crossing from two locations in the Czech Republic were used for training and validation of machine learning models. Several architectures of convolutional neural networks (CNN), successfully applied in the previous research for electrical grid analysis, were evaluated in this paper for the problem of locomotive type identification with regards to the number of parameters and the size of the available dataset, which was limited in this case. Therefore, time-series pre-processing techniques aiming to improve classification accuracy by removing noise were incorporated, including Butterworth low-pass and high-pass filters as well as Wavelet threshold filter. Results for raw and filtered data are presented as mean confusion matrices to evaluate the statistical significance of the adopted methods.

English abstract

Accelerometer data collected by in-situ measurements near the common crossing from two locations in the Czech Republic were used for training and validation of machine learning models. Several architectures of convolutional neural networks (CNN), successfully applied in the previous research for electrical grid analysis, were evaluated in this paper for the problem of locomotive type identification with regards to the number of parameters and the size of the available dataset, which was limited in this case. Therefore, time-series pre-processing techniques aiming to improve classification accuracy by removing noise were incorporated, including Butterworth low-pass and high-pass filters as well as Wavelet threshold filter. Results for raw and filtered data are presented as mean confusion matrices to evaluate the statistical significance of the adopted methods.

Keywords

Railway Switches and Crossings, Train Identification System, Convolutional Neural Network, Accelerometer Data, Time Series Processing, Wavelet Transform

Key words in English

Railway Switches and Crossings, Train Identification System, Convolutional Neural Network, Accelerometer Data, Time Series Processing, Wavelet Transform

Authors

KRČ, R.; PODROUŽEK, J.; VUKUŠIČ, I.; PLÁŠEK, O.

RIV year

2022

Released

07.06.2021

Book

Computational Science and AI in Industry (CSAI 2021)

Pages from

1

Pages to

1

Pages count

1

BibTex

@inproceedings{BUT171770,
  author="Rostislav {Krč} and Jan {Podroužek} and Ivan {Vukušič} and Otto {Plášek}",
  title="Data pre-processing effect on classification accuracy of convolutional neural networks for train type identification",
  booktitle="Computational Science and AI in Industry (CSAI 2021)",
  year="2021",
  pages="1--1"
}