Přístupnostní navigace
E-application
Search Search Close
Publication result detail
BEREZANSKY, L.; DIBLÍK, J.; SVOBODA, Z.; ŠMARDA, Z.
Original Title
Uniform exponential stability of linear delayed integro-differential vector equations
English Title
Type
WoS Article
Original Abstract
Uniform exponential stability of a linear delayed integro-differential vector equation is considered. The main result is of an explicit type, depending on all delays, and its proof is based on an a priori estimation of solutions, a Bohl-Perron type result, and utilization of the matrix measure.
English abstract
Keywords
A priori estimation; Delay; Exponential stability; Integro-differential systems; Linear systems Bohl-Perron type result
Key words in English
Authors
RIV year
2021
Released
05.01.2021
ISBN
0022-0396
Periodical
Journal of Differential Equations
Volume
270
Number
5
State
United States of America
Pages from
573
Pages to
595
Pages count
23
URL
https://www.sciencedirect.com/science/article/pii/S0022039620304551
BibTex
@article{BUT171676, author="Leonid {Berezansky} and Josef {Diblík} and Zdeněk {Svoboda} and Zdeněk {Šmarda}", title="Uniform exponential stability of linear delayed integro-differential vector equations", journal="Journal of Differential Equations", year="2021", volume="270", number="5", pages="573--595", doi="10.1016/j.jde.2020.08.011", issn="0022-0396", url="https://www.sciencedirect.com/science/article/pii/S0022039620304551" }
Documents
171676_UMAT_merge