Přístupnostní navigace
E-application
Search Search Close
Publication result detail
DILNA, N.; FEČKAN, M.; RONTÓ, A.
Original Title
On a Class of Functional Differential Equations with Symmetries
English Title
Type
WoS Article
Original Abstract
It is shown that a class of symmetric solutions of scalar non-linear functional differential equations can be investigated by using the theory of boundary value problems. We reduce the question to a two-point boundary value problem on a bounded interval and present several conditions ensuring the existence of a unique symmetric solution.
English abstract
Keywords
functional differential equation; argument deviation; periodic; antiperiodic; symmetry; two-point problem; unique solvability
Key words in English
Authors
RIV year
2020
Released
27.11.2019
Publisher
MDPI
Location
BASEL
ISBN
2073-8994
Periodical
Symmetry-Basel
Volume
11
Number
12
State
Swiss Confederation
Pages from
1
Pages to
13
Pages count
URL
https://www.mdpi.com/2073-8994/11/12/1456
Full text in the Digital Library
http://hdl.handle.net/11012/195686
BibTex
@article{BUT163758, author="Nataliya {Dilna} and Michal {Fečkan} and András {Rontó}", title="On a Class of Functional Differential Equations with Symmetries", journal="Symmetry-Basel", year="2019", volume="11", number="12", pages="1--13", doi="10.3390/sym11121456", url="https://www.mdpi.com/2073-8994/11/12/1456" }
Documents
symmetry-11-01456-v2