Publication result detail

The symmetry reduction of variational integrals

TRYHUK, V.; CHRASTINOVÁ, V.

Original Title

The symmetry reduction of variational integrals

English Title

The symmetry reduction of variational integrals

Type

WoS Article

Original Abstract

The Routh reduction of cyclic variables in the Lagrange function and the Jacobi-Maupertuis principle of constant energy systems are generalized

English abstract

The Routh reduction of cyclic variables in the Lagrange function and the Jacobi-Maupertuis principle of constant energy systems are generalized

Keywords

Routh reduction;Lagrange variational problem;Poincaré-Cartan form;diffiety

Key words in English

Routh reduction;Lagrange variational problem;Poincaré-Cartan form;diffiety

Authors

TRYHUK, V.; CHRASTINOVÁ, V.

RIV year

2019

Released

14.08.2018

Publisher

Institute of Mathematics AS CR

Location

Praha

ISBN

0862-7959

Periodical

Mathematica Bohemica

Volume

143

Number

3

State

Czech Republic

Pages from

291

Pages to

328

Pages count

37

BibTex

@article{BUT150230,
  author="Václav {Tryhuk} and Veronika {Chrastinová}",
  title="The symmetry reduction of variational integrals",
  journal="Mathematica Bohemica",
  year="2018",
  volume="143",
  number="3",
  pages="291--328",
  doi="10.21136/MB.2017.0008-17",
  issn="0862-7959"
}