Přístupnostní navigace
E-application
Search Search Close
Publication result detail
VIČAR, T.
Original Title
Robust Cell Nuclei Tracking Using Gaussian Mixture Shape Model
English Title
Type
Paper in proceedings (conference paper)
Original Abstract
The life cell microscopic imaging is a standard approach for studying of cancer cell morphology and behaviour during some treatment. In the dense cell cultures, tracking each cell nucleus is challenging task due to cell overlap and interactions. Moreover, for time-lapse sequences (lasting typically 20-30 hours) the robust automatic cell tracking is needed. This paper describes new method for fluorescence nuclei tracking based on Gaussian mixture model (GMM), and additionally, GMM modification allowing application to the images is also introduced. Method is mainly designed for robustness - tracking the highest possible number of nuclei in the whole sequence. Proposed algorithm proved to by very reliable with 80% of correctly tracked nuclei.
English abstract
Keywords
Fluorescence nuclei images, nuclei tracking, Gaussian mixture model
Key words in English
Authors
RIV year
2019
Released
26.04.2018
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
Location
Brno
ISBN
978-80-214-5614-3
Book
Proceedings of the 24th Conference STUDENT EEICT 2018
Pages from
590
Pages to
593
Pages count
4
URL
http://www.feec.vutbr.cz/EEICT/archiv/sborniky/EEICT_2018_sbornik.pdf
BibTex
@inproceedings{BUT147410, author="Tomáš {Vičar}", title="Robust Cell Nuclei Tracking Using Gaussian Mixture Shape Model", booktitle="Proceedings of the 24th Conference STUDENT EEICT 2018", year="2018", number="první", pages="590--593", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních", address="Brno", isbn="978-80-214-5614-3", url="http://www.feec.vutbr.cz/EEICT/archiv/sborniky/EEICT_2018_sbornik.pdf" }
Documents
eeict_vicar_final_po_oprave