Přístupnostní navigace
E-application
Search Search Close
Publication result detail
KUČERA, R.; ŠÁTEK, V.; HASLINGER, J.; POCHYLÝ, F.; KOKO, J.; SASSI, T.
Original Title
Numerical Modelling of the Stokes Flow with Threshold Slip Boundary Conditions
English Title
Type
Paper in proceedings (conference paper)
Original Abstract
The paper deals with formulation and numerical realization of fluid flow problems with threshold boundary conditions.This means that the slip of the fluid on the boundary may occur only when the shear stress attains a certain bound given a-priori.The mathematical model leads to an inequality type problem. A short comment on the numerical method used for solving suchproblems and results of several model examples will be presented.
English abstract
Keywords
Stokes flow, minimalization problem, stick-slip boundary conditions
Key words in English
Authors
RIV year
2018
Released
21.07.2017
Publisher
American Institute of Physics
Location
Rhodes
Book
14th International Conference of Numerical Analysis and Applied Mathematics
ISBN
0094-243X
Periodical
AIP conference proceedings
Number
1863
State
United States of America
Pages from
1
Pages to
4
Pages count
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026627217&doi=10.1063%2f1.4992514&partnerID=40&md5=911983d38d3734e3d99884856ba9ec91
Full text in the Digital Library
http://hdl.handle.net/
BibTex
@inproceedings{BUT144400, author="Radek {Kučera} and Václav {Šátek} and Jaroslav {Haslinger} and František {Pochylý} and Jonas {Koko} and Taoufik {Sassi}", title="Numerical Modelling of the Stokes Flow with Threshold Slip Boundary Conditions", booktitle="14th International Conference of Numerical Analysis and Applied Mathematics", year="2017", journal="AIP conference proceedings", number="1863", pages="1--4", publisher="American Institute of Physics", address="Rhodes", doi="10.1063/1.4992514", issn="0094-243X", url="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026627217&doi=10.1063%2f1.4992514&partnerID=40&md5=911983d38d3734e3d99884856ba9ec91" }