Přístupnostní navigace
E-application
Search Search Close
Publication result detail
DEMCHENKO, H.
Original Title
OPTIMALITY CONDITIONS FOR SCALAR LINEAR DIFFERENTIAL SYSTEM
English Title
Type
Paper in proceedings (conference paper)
Original Abstract
In the contribution, for scalar linear differential system $$\frac{dx(t)}{dt}= Ax(t) +Bu(t),$$ where $A \in R^{n×n}$, $B \in R^{n×m}$, $x(t) \in R^n$ and $u(t) \in R^m$ is a control function, a problem of minimizing a function $$I[x(t),u(t)] =\int _t_0 ^ \infty (x^T(t)Cx(t) + u^T(t)Du(t))dt,$$ where $C \in R^{n×n}$ is a symmetric, positive definite matrix and $D$ is a diagonal control matrix, $D = diag{d_j}$, $d_j > 0$, $j = 1,...,m$, is considered. To solve the problem, Malkin’s approach and Lyapunov’s second method are utilized.
English abstract
Keywords
optimization problem, control function, Lyapunov function.
Key words in English
Authors
RIV year
2018
Released
27.04.2017
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5496-5
Book
Proceedings of the 23nd Conference STUDENT EEICT 2017
Pages from
629
Pages to
633
Pages count
5
URL
http://eeict.feec.vutbr.cz/2017/sbornik/EEICT_2017-sbornik-komplet-2.pdf
BibTex
@inproceedings{BUT142611, author="Hanna {Demchenko}", title="OPTIMALITY CONDITIONS FOR SCALAR LINEAR DIFFERENTIAL SYSTEM", booktitle="Proceedings of the 23nd Conference STUDENT EEICT 2017", year="2017", number="1", pages="629--633", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5496-5", url="http://eeict.feec.vutbr.cz/2017/sbornik/EEICT_2017-sbornik-komplet-2.pdf" }