Přístupnostní navigace
E-application
Search Search Close
Publication result detail
ŘEHÁK, P.; YAMAOKA, N.
Original Title
Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales
English Title
Type
WoS Article
Original Abstract
We are concerned with the oscillation problem for second-order nonlinear dynamic equations on time scales of the form $x^{\Delta \Delta} + f(x)/(t \sigma(t)) = 0$, where $f(x)$ satisfies $x f(x) > 0$ if $x \neq 0$. By means of Riccati technique and phase plane analysis of a system, (non)oscillation criteria are established. A necessary and sufficient condition for all nontrivial solutions of the Euler-Cauchy dynamic equation $y^{\Delta \Delta} +\lambda/(t \sigma(t))\, y = 0$ to be oscillatory plays a crucial role in proving our results.
English abstract
Keywords
Oscillation constant; Dynamic equations on time scales; Euler-Cauchy equation; Riccati technique; Phase plane analysis; Schauder fixed point theorem
Key words in English
Authors
RIV year
2018
Released
07.09.2017
Publisher
Taylor and Francis
ISBN
1563-5120
Periodical
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS
Volume
23
Number
11
State
United Kingdom of Great Britain and Northern Ireland
Pages from
1884
Pages to
1900
Pages count
17
BibTex
@article{BUT140805, author="Pavel {Řehák} and Naoto {Yamaoka}", title="Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales", journal="JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS", year="2017", volume="23", number="11", pages="1884--1900", doi="10.1080/10236198.2017.1371146", issn="1023-6198" }