Přístupnostní navigace
E-application
Search Search Close
Publication result detail
DIBLÍK, J.
Original Title
Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations
English Title
Type
WoS Article
Original Abstract
A linear differential equation with advanced-argument $y'(t)-c(t)y(t+\tau)=0$ is considered where $c\colon [t_0,\infty)\to [0,\infty)$, $t_0\in \bR$ is a bounded and locally Lipschitz continuous function and $\tau>0$. The well-known explicit integral criterion $$ \int_{t}^{t+\tau}c(s)\,\diff s\le{1}/{\e}\,,\,\,\,t\in[t_0,\infty) $$ guarantees the existence of a positive solution on $[t_0,\infty)$. The paper derives new integral criteria involving the coefficient $c$. Their independence of the previous result is discussed as well.
English abstract
Keywords
Positive solution, advanced-argument, integral criterion.
Key words in English
Authors
RIV year
2018
Released
31.01.2017
Publisher
Elsevier
ISBN
0893-9659
Periodical
Applied Mathematics Letters
Volume
72
Number
10
State
United States of America
Pages from
40
Pages to
45
Pages count
8
URL
https://doi.org/10.1016/j.aml.2016.07.016
BibTex
@article{BUT137192, author="Josef {Diblík}", title="Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations", journal="Applied Mathematics Letters", year="2017", volume="72", number="10", pages="40--45", doi="10.1016/j.aml.2016.07.016", issn="0893-9659", url="https://doi.org/10.1016/j.aml.2016.07.016" }