Přístupnostní navigace
E-application
Search Search Close
Publication result detail
ŘEHÁK, P.
Original Title
On asymptotic relationships between two higher order dynamic equations on time scales
English Title
Type
WoS Article
Original Abstract
We consider the $n$-th order dynamic equations $x^{\Delta^n}\!+p_1(t)x^{\Delta^{n-1}}+\cdots+p_n(t)x=0$ and $y^{\Delta^n}+p_1(t)y^{\Delta^{n-1}}+\cdots+p_n(t)y=f(t,y(\tau(t)))$ on a time scale $\mathbb{T}$, where $\tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $\mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.
English abstract
Keywords
higher order dynamic equation; time scale; asymptotic equivalence
Key words in English
Authors
RIV year
2018
Released
23.04.2017
Publisher
Elsevier
ISBN
0893-9659
Periodical
Applied Mathematics Letters
Volume
2017
Number
73
State
United States of America
Pages from
84
Pages to
90
Pages count
7
URL
http://www.sciencedirect.com/science/article/pii/S0893965917300502
BibTex
@article{BUT135851, author="Pavel {Řehák}", title="On asymptotic relationships between two higher order dynamic equations on time scales", journal="Applied Mathematics Letters", year="2017", volume="2017", number="73", pages="84--90", doi="10.1016/j.aml.2017.02.013", issn="0893-9659", url="http://www.sciencedirect.com/science/article/pii/S0893965917300502" }