Přístupnostní navigace
E-application
Search Search Close
Publication result detail
ČERMÁK, J.; NECHVÁTAL, L.; GYŐRI, I.
Original Title
On explicit stability conditions for a linear fractional difference system
English Title
Type
WoS Article
Original Abstract
The paper describes the stability area for an autonomous difference system with the Caputo and Riemann-Liouville forward difference operator whose order is between 0 and 1. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons, consequences and illustrated examples are presented as well.
English abstract
Keywords
fractional-order difference system; Caputo difference operator; Riemann-Liouville difference operator; asymptotic stability
Key words in English
Authors
RIV year
2016
Released
30.06.2015
Publisher
Walter de Gruyter GmbH, Berlin/Boston
Location
Berlin, Germany
ISBN
1311-0454
Periodical
Fractional Calculus and Applied Analysis
Volume
18
Number
3
State
Republic of Bulgaria
Pages from
651
Pages to
672
Pages count
22
URL
http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml
BibTex
@article{BUT117956, author="Jan {Čermák} and Luděk {Nechvátal} and István {Győri}", title="On explicit stability conditions for a linear fractional difference system", journal="Fractional Calculus and Applied Analysis", year="2015", volume="18", number="3", pages="651--672", doi="10.1515/fca-2015-0040", issn="1311-0454", url="http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml" }