Přístupnostní navigace
E-application
Search Search Close
Publication result detail
GÖTTHANS, T.; PETRŽELA, J.
Original Title
New class of chaotic systems with circular equilibrium
English Title
Type
WoS Article
Original Abstract
This paper brings a new mathematical model of the third-order autonomous deterministic dynamical system with associated chaotic motion. Its unique property lies in the existence of circular equilibrium which was not, by referring to the best knowledge of the authors, so far reported. Both mathematical analysis and circuitry implementation of the corresponding differential equations are presented. It is shown that discovered system provides a structurally stable strange attractor which fulfills fractal dimensionality and geometrical density and is bounded into a finite state space volume.
English abstract
Keywords
Autonomous system, Attracting set, Circular equilibrium, Chaos, Nonlinear dynamics, Vector field.
Key words in English
Authors
RIV year
2016
Released
10.04.2015
ISBN
0924-090X
Periodical
NONLINEAR DYNAMICS
Volume
81
Number
04
State
United States of America
Pages from
1143
Pages to
1149
Pages count
7
URL
http://link.springer.com/article/10.1007%2Fs11071-015-2056-7#
Full text in the Digital Library
http://hdl.handle.net/11012/201392
BibTex
@article{BUT114645, author="Tomáš {Götthans} and Jiří {Petržela}", title="New class of chaotic systems with circular equilibrium", journal="NONLINEAR DYNAMICS", year="2015", volume="81", number="04", pages="1143--1149", doi="10.1007/s11071-015-2056-7", issn="0924-090X", url="http://link.springer.com/article/10.1007%2Fs11071-015-2056-7#" }
Documents
Gotthans-Petržela2015_Article_NewClassOfChaoticSystemsWithCi