Přístupnostní navigace
E-application
Search Search Close
Publication result detail
DIBLÍK, J.; KÚDELČÍKOVÁ, M.
Original Title
New explicit integral criteria for the existence of positive solutions to the linear advanced equation $\dot x(t) = c (t) x (t + \tau)$
English Title
Type
WoS Article
Original Abstract
The paper is devoted to the investigation of a linear differential equation with advanced argument $y'(t)=c(t)y(t+\tau)$ where $\tau>0$ is a constant advanced argument and the function $c\colon [t_0,\infty)\to [0,\infty)$, $t_0\in \bR$ is bounded and locally Lipschitz continuous. New explicit integral criteria for the existence of a positive solution in terms of $c$ and $\tau$ are derived and their efficiency is demonstrated.
English abstract
Keywords
advanced linear differential equation, positive solution, explicit criterion
Key words in English
Authors
RIV year
2017
Released
02.12.2014
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Location
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
ISBN
0893-9659
Periodical
Applied Mathematics Letters
Volume
38
Number
2014
State
United States of America
Pages from
144
Pages to
148
Pages count
5
URL
http://www.sciencedirect.com/science/article/pii/S0893965914002341
BibTex
@article{BUT110580, author="Josef {Diblík} and Mária {Kúdelčíková}", title="New explicit integral criteria for the existence of positive solutions to the linear advanced equation $\dot x(t) = c (t) x (t + \tau)$", journal="Applied Mathematics Letters", year="2014", volume="38", number="2014", pages="144--148", doi="10.1016/j.aml.2014.06.020", issn="0893-9659", url="http://www.sciencedirect.com/science/article/pii/S0893965914002341" }