Přístupnostní navigace
E-application
Search Search Close
Publication result detail
DIBLÍK, J.; RŮŽIČKOVÁ, M.; CHUPÁČ, R.
Original Title
Unbounded solutions of the equation $\dot y(t)=\sum_{i=1}^{n}\beta_{i}$ (t)\left[y(t-\delta_{i})-y(t-\tau_{i})\right]$
English Title
Type
Peer-reviewed article not indexed in WoS or Scopus
Original Abstract
Asymptotic behavior of solutions of first-order differential equation with deviating arguments in the form $\dot y(t)=\sum_{i=1}^{n}\beta_{i}(t)\left[y(t-\delta_{i})-y(t-\tau_{i})\right]$ is discussed for $t\to\infty$. A criterion for representing solutions in exponential form is proved. Inequalities for solution estimation are given. Sufficient conditions for the existence of unbounded solutions are derived. A relevant illustrative example is given as well. Known results are discussed and compared.
English abstract
Keywords
Unbounded solution; exponential solution; discrete delays
Key words in English
Authors
RIV year
2014
Released
03.12.2013
Publisher
Elsevier Science Publishing Co
Location
USA
ISBN
0096-3003
Periodical
APPLIED MATHEMATICS AND COMPUTATION
Volume
2013
Number
221
State
United States of America
Pages from
610
Pages to
619
Pages count
10
BibTex
@article{BUT103938, author="Josef {Diblík} and Miroslava {Růžičková} and Radoslav {Chupáč}", title="Unbounded solutions of the equation $\dot y(t)=\sum_{i=1}^{n}\beta_{i}$ (t)\left[y(t-\delta_{i})-y(t-\tau_{i})\right]$", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2013", volume="2013", number="221", pages="610--619", issn="0096-3003" }