Course detail
Mathematics
FAST-BAA014Acad. year: 2025/2026
Basics of linear algebra (matrices, determinants, systems of linear algebraic equations). Some notions of vector algebra and their use in analytic geometry. Function of one variable, limit, continuous functionst, derivative of a function. Some elementary functions, Taylor polynomial. Basics of calculus. Probability. Random varibles, laws of distribution, numeric charakteristics. Sampling, processing statistical data.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Aims
Students will have a short overview on methods of higher mathematics(operations with matrices, algebra of vectors, differential and integral calculus of functions of one variable, differential calculus of functions of several variables, probability and statistics).
Study aids
Prerequisites and corequisites
Basic literature
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 8, Určitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-525-9 (CS)
DLOUHÝ, Oldřich, TRYHUK, Václav: Matematika I, Diferenciální počet funkce jedné reálné proměnné}, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-982-0 (CS)
KOUTKOVÁ, Helena, Mill, Ivo: Základy pravděpodobnosti, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-574-7 (CS)
LARSON, Ron, HOSTETLER, Rober, EDWARDS Bruce: Calculus With Analytic Geometry, 8th edition, Brooks Cole, 2005. ISBN: 978-0618502981 (EN)
NOVOTNÝ, Jiří: Matematika I, Modul 1, Základy lineární algebry, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-748-2 (CS)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Modul GA01–M01, Vybrané části a aplikace vektorového počtu, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-526-6 (CS)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Diferenciální počet funkcí více reálných proměnných, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 80-214-2776-0 (CS)
Recommended reading
Classification of course in study plans
- Programme BPC-APS Bachelor's 1 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- 1. Matrices, basic operations.
- 2. Systems of linear algebraic equations, Gauss elimination method.
- 3. Basics of vector algebra, dot, cross, and scalar triple product.
- 4. Functions of one variable. Limit, continuity and derivative of a function.
- 5. Some elementary functions, their properties, approximation by Taylor polynomial.
- 6. Antiderivative and indefinite integral, Newton integral.
- 7. Riemann’s integral and its calculation, some applications in geometry and physics.
- 8. Numeric calculation of a definite integral.
- 9. Two- and more-functions, partial derivative and its use.
- 10. Probability, random variables.
- 11. Numerical characteritics of a random variable.
- 12. Basic distributions.
- 13. Random sampling, statistics
Exercise
Teacher / Lecturer
Syllabus
- 1. Matrices, basic operations.
- 2. Systems of linear algebraic equations, Gauss elimination method.
- 3. Basics of vector algebra, dot, cross, and scalar triple product.
- 4. Functions of one variable. Limit, continuity and derivative of a function.
- 5. Some elementary functions, their properties, approximation by Taylor polynomial.
- 6. Antiderivative and indefinite integral, Newton integral.
- 7. Riemann’s integral and its calculation, some applications in geometry and physics.
- 8. Numeric calculation of a definite integral.
- 9. Two- and more-functions, partial derivative and its use.
- 10. Probability, random variables.
- 11. Numerical characteritics of a random variable.
- 12. Basic distributions.
- 13. Random sampling, statistics