Course detail
Aerodynamics II
FSI-OA2-AAcad. year: 2024/2025
Compressibility effects - fundamental laws of compressible fluid flow – kinematics, dynamics of flow field, viscous effects (state equation, conservation of mass – eq. of continuity, Bernoulli’s eq., Euler’s eq., Navier-Stokes eq.). Compressibility effects on airfoil characteristics, wing characteristics and complete aircraft aerodynamic characteristics. Transonic and supersonic flight – selected topics (sound and temperature barrier, area rule, swept wings etc.). Applied aerodynamics computational methods – panel methods – 2D, 3D BEM, theory and applications. FVD and FVM – 1D,2D and 3D, theory and applications. Commercial software, exercise. Aircraft aerodynamic optimization – tools, optimization techniques, multidisciplinary optimization basics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Entry knowledge
Rules for evaluation and completion of the course
If attendance at seminars and laboratory exercises is less then 10 of 13 weeks of exercises, a student has to prove he/she elaborated all problems dealt with at missed lessons. If the attendance at exercises is less then 50 % student has to compensate them individualy.
Aims
Students will get to know how to solve compressible subsonic and supersonic flows around airfoils, wings and aeroplanes as well as flows in nozzles, chanenls and tubes.
Study aids
Prerequisites and corequisites
Basic literature
Prof. Václav Brož: Aerodynamika VR, , 0
Recommended reading
J. D. Anderson, jr.: Fundamentals of Aerodynamics, , 0
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1.1 Fundamental laws of compressible fluid flow - fluid kinematics, dynamics, viscosity effects
1.2 Compressibility effects on wing section characteristics
1.3 Compressibility effects on finite wing characteristics
1.4 Compressibility effects on complete aircarft
1.5 Transonic and supersonic flight – selected topics
2. Computational methods in applied aerodynamics
2.1 Panel codes – 2D and 3D BEM, theory and application
2.2 CFD codes – FDM, FVM in 1D, 2D and 3D, theory, application examples, commercial software, exercise
3. Aircraft aerodynamic optimization
3.1 Tools, optimization methods
3.2 Multidisciplinary optimization basics
Laboratory exercise
Teacher / Lecturer
Syllabus
Exercise
Teacher / Lecturer
Syllabus
Application of hodpographic transformation.
Comparison of basic methods, accuracy.
Flow at supersonic edges by lineariyed method.
Reflexion of supersonic characteristics at wall and at free boundary.
Mutual interactions of expansion and compression characteristics.
Continuous supersonic expansion at edge of any angle.
Shock waves solution.
Reflexion of shoch wave and continuous expansion.
Solution of flow around an airfoil by CFD, XFOIL.
Solution of flow around an aircraft by CFD, FLUENT.
Evaluation of results, accuracy.
Elearning