Course detail

# Fundamentals of Structural Mechanics

Students will be able to solve reactions and internal forces of the plane statically determinate structures, of plane beams with straight and broken axis, to solve three-hinged broken beam with and without a bar, the planar composed beam systems and plane truss systems, to determine the position of centroid and the second order moments of cross-section.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Department

Institute of Structural Mechanics (STM)

Entry knowledge

The basic secondary s school knowledge from mathematics and physics.

Rules for evaluation and completion of the course

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Aims

The students will be acquainting with: (i) Reactions and internal forces of the plane static determinate structures, (ii) centroid and second order moments of cross-section.
The students will be able to solve reactions and internal forces of the plane statically determinate structures, of plane beams with straight and broken axis, to solve three-hinged broken beam with and without a tie, the planar composed beam systems and plane trusses systems, to design centroid and second order moments of gross-section.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Not applicable.

Classification of course in study plans

• Programme B-K-C-SI (N) Bachelor's

branch VS , 1. year of study, summer semester, compulsory

• Programme B-P-C-SI (N) Bachelor's

branch VS , 1. year of study, summer semester, compulsory

• Programme B-P-C-MI (N) Bachelor's

branch MI , 1. year of study, summer semester, compulsory

#### Type of course unit

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

Exercise

39 hours, compulsory

Teacher / Lecturer

Syllabus

1. Moment of force to a point, pair of forces. Concurrent system of forces in plane, general system of forces in plane. 2. System of parallel forces in plane and its static centre. Static centre of plane composed shapes. 3. Beam supports and types of loads. Calculation of support reactions. Internal forces diagrams of plane beams. 4. Solution of basic types of beams: supported beams and cantilevers, straight beams with overhangs. 5. Supports reactions and internal forces diagrams of the beams with broken and curved axis. 6. Decomposition of slant continuous loads. Support reactions and internal forces diagrams of the slant beam. 7. Three-hinged broken beam (with and without a bar) and plane arches. 8. Beam with internal hinges - Gerber’s girder. 9. Centroid of planar cross-sections. Second order moments of planar cross-section, Steiner’s theorem. Mohr’s circle. 10. Planar trusses (hinged bar systems). Calculation of axial forces of trusses by method of sections, Ritter's solution. 11. Space systems of forces. General space system of forces. Constraints and reactions of rigid body in space. 12. Straight bar with space loading, space cantilever beam with rectangular broken centre line, reactions and diagrams of internal forces and moments. 13. Space beam with broken centre line, reactions and diagrams of internal forces and moments.