Course detail
Mathematics III
FAST-GA05Acad. year: 2023/2024
Double and triple integral and their applications. Transformations of double and triple integrals.
Curve integrals in scalar and vector fields, basic properties ans calculation. Independence of the curve integral of the path of integration. Green`s Theorem.
Ordinary differential equations (DE) of the first order, existence and uniqueness of the solution. DE with separable variables, homogeneous, linear and exact DE. Orthogonal and isogonal trajectories, envelope of the family of curves. Linear DE of n-th order, general solution, basic properties of solutions. Linear DE with constant coefficients.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Basics of integral calculus of functions of one variable and the basic interpretations.
Rules for evaluation and completion of the course
Aims
They should learn the basics of line integrals in scalar and vector fields and their aplications. They should know how to calculate simple line integrals.
They should be acquainted with selected first-order differential equations (DE) focussing on problems of existence and uniqueness of their solutions, know how to find analytical solutions to separated, linear, 1st-order homogeneous, exact DE's, calculate non-homogeneous linear nth-order DE's with a special right-hand side and using the variation of constants method. They should understand the structure of solutions of nth-order non-homogeneous linear DE's with issues of orthogonal and isogonal trajectories.
Students will achieve the subject's main objectives. Knowledge of double and triple integrals, their calculation and application. Knowledge of curvilinear integral in a scalar and vector field, their calculation and application. Knowledge of basic facts on existence, uniqueness and analytical methods of solutions on selected first-order differential equations and nth-order linear differential equations.
Study aids
Prerequisites and corequisites
Basic literature
BUDÍNSKÝ, B. - CHARVÁT, J.: Matematika II. SNTL, Praha, 1990. (CS)
Daněček Josef, Dlouhý Oldřich, Přibyl Oto. Matematika II, Modul 1, Dvojný a trojný integrál, Brno, VUT, FAST, Studijní opora, 2004 (CS)
Daněček Josef, Dlouhý Oldřich, Přibyl Oto. Matematika II, Modul 2, Křivkové integrály, Brno, VUT, FAST, Studijní opora, 2004 (CS)
Diblík Josef, Přibyl Oto. Obyčejné diferenciální rovnice 1, Modul 3, Brno, VUT, FAST, Studijní opora, 2004 (CS)
Diblík Josef, Přibyl Oto. Obyčejné diferenciální rovnice 2, Modul 4, Brno, VUT, FAST, Studijní opora, 2004 (CS)
STEIN, S. K.: Calculus and analytic geometry. New York, 1989. (EN)
Recommended reading
DANĚČEK, J., DLOUHÝ, O, PŘIBYL, O: Modul 1 Dvojný a trojný integrál. CERM Brno, 2006. (CS)
DANĚČEK, J., DLOUHÝ, O, PŘIBYL, O: Modul 2 Křivkové integrály. CERM Brno, 2006. (CS)
DIBLÍK, J., PŘIBYL,O.: Obyčejné diferenciální rovnice. CERM Brno, 2004. (CS)
Kolektiv: Elektronické studijní opory. FAST VUT Brno, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp] (CS)
KOUTKOVÁ, H., PRUDILOVÁ, K.: Sbírka příkladů z matematiky III, Modul BA02_M05 Dvojný, trojný a křivkový integrál. FAST VUT, 2007. (CS)
Prudilová, K. a spol.: Sbírka příkladů z matematiky III. Stavební fakulta VUT Brno, CERM, 2001. (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Exercise
Teacher / Lecturer
Syllabus