Course detail

Digital Integrated Circuits

FEKT-MPA-DISAcad. year: 2023/2024

Distribution, forming and delaying of pulse signals. Electronic switches. Comparators and flipflops. Function generators. Principles and classification of digital circuits. Combinational and sequential digital circuits. Principles of programmable digital systems. Basic families of digital circuits (bipolar, unipolar), rules for their use. Realization and functional verification of the circuits using modular system, computer aided simulation of analog and digital systems.

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

The subject knowledge on the Bachelor´s degree level is requested.

Rules for evaluation and completion of the course

Practicals - 40 points; minimum 30 points.
Final exam -60 points; minimum 20 points.
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Aims

The aim of the course is to make students familiar with digital integrated circuits and their blocks, with the use of laboratory instruments and with computer methods of simulation and analysis of digital circuits.
The student is able to:
- Explain and design a digital system, implement basic combinational logic circuits;
- Apply the principles of designing digital circuits and systems;
- List the basic properties and types of digital circuits in a variety of technologies;
- Perform basic design of the generator rectangular oscillations;
- Describe the advantages and disadvantages of displays (LCD, OLED, plasma) and apply it to the design of electronic systems;
- Characterize the basic properties of memory circuits, categorize and explain the advantages and disadvantages of each type;
- Describe the various phenomena that are important for the activity of the transistor with floating gate memory with EPROM, FLASH and EEPROM;
- Describe the differences between the various methods of processing analog signals, characterize the advantages and disadvantages of each type of AD and DA converters;
- Is familiar with the basics of programmable logic devices and the VHDL language, can create simple applications of these circuits;

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Collier, M.: Digital Circuit Design: Principles and Practice, reateSpace Independent Publishing Platform; 1 edition (June 12, 2014),ISBN-10: 1499686900 (EN)
Hall, S.H.: High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices 1st Edition, Wiley-IEEE Press; 1 edition (August 25, 2000), ISBN-10: 0471360902 (EN)

Recommended reading

Wakerly, J., F.: Digital design - principles and practices. Prentice Hall, 2001, ISBN 0-13-089896-1 (EN)
Balch, M.: Complete digital design. McGraw-Hill, 2003, ISBN 0-07-140927-0 (EN)

Classification of course in study plans

  • Programme MPA-MEL Master's, 1. year of study, summer semester, compulsory
  • Programme MPAD-MEL Master's, 1. year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hours, compulsory

Teacher / Lecturer

Syllabus

Forming and delaying of pulse signals,linear transmission circuits of first and second order, diodes and transistors in pulse circuits,transistor switch.
Combinational integrated circuits, characteristics and capabilities.
Description and analysis of gate networks.
Design of combinational systems: two-level gate networks.
Design of combinational systems: multilevel gate networks.
Specification of sequential systems.
Sequential networks. Generators of rectangular and function signals.
Standard combinational modules. Arithmetic combinational modules and networks.
Standard sequential modules.
Programmable modules.
Register-transfer level (RTL) systems.
Data and control subsystems.
Specification and implementation of a microcomputer.

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

Pulse signals and their propagation by linear circuits.
Shaping of pulse signals.
Semiconductor switches.
Analysis and synthesis of combinational logic circuits, hazards.
Synchronous systems, counter and state machines design.
Basic properties of digital integrated circuits.