Course detail
Thermodynamics of Power Cycles
FSI-9TDCAcad. year: 2023/2024
Introduction to thermodynamics. Properties of gases and vapors. Gas mixtures. Model of ideal, semi-real and real gas. Thermodynamic laws for cycles. Thermodynamics of gas and vapor flow. Theoretical cycles of gas and steam heat engines, compressors and cycles of refrigeration and heat pumps. Thermochemistry, ways of solving combustion equations. Modeling of heat transfer in thermal machines. Ways of solving 0D and 1D simulations of thermal cycles. The solution of real cycles of thermal machines, use of Matlab / Simulink. The solution of real thermal cycles using GT-Suite.
Language of instruction
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
The course consists of lectures and consultations in agreement with the course supervisor.
Aims
The ability to perform simulations of both theoretical and real cycles of working machines such as internal combustion engines, combustion turbines, jet engines, compressors, and steam turbines.
Study aids
Prerequisites and corequisites
Basic literature
Incropera, Frank, David Dewitt, Theodore Bergman, and Adrienne Lavine. c2013. Principles Of Heat And Mass Transfer. 7th ed., international student version.. Singapore: John Wiley. (EN)
Kirkpatrick, Allan T., and Colin R. Ferguson. 2016. Internal Combustion Engines: Applied Thermosciences. Third. United Kingdom: John Wiley. (EN)
Macek Jan, 2012. Spalovací motory. ČVUT (CS)
Recommended reading
Pavelek, Milan. a kol. 2003, Termomechanika. Akademické nakladatelství CERM s.r.o. Brno. (CS)
Wu, Chih. 2004. Thermodynamic Cycles: Computer-Aided Design And Optimization. New York: Marcel Dekker. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Model of ideal, semi-perfect and real gas.
3. Thermodynamic laws for cycles. Thermodynamics of gas and vapor flow.
4. Theoretical cycles of gas and steam heat engines, compressors and cycles of cooling equipment and heat pumps.
5. Thermochemistry, ways of solving combustion equations.
6. Modeling of heat transfer in thermal machines.
7. Ways of solving 0D and 1D simulation of working cycles of thermal machines.
8. The solution of real cycles of thermal machines, the use of Matlab / Simulink.
9. A solution of real thermal cycles using GT-Suite.
10. Possibilities of simulation of thermal machines in combination with an electric drive