Course detail
Introduction to Automatic Control
FSI-VZRAcad. year: 2023/2024
The primary aim of the course is to provide the students with the complete knowledge of the automation and control systems.
The first part of the course makes the students familiar with the logic circuits. It presents logic functions, logic elements, combinational and sequential logic circuits. Minimization of logic functions (Karnaugh map) is discussed.
The second part includes the foundations of linear continuous systems analysis using the transfer function and impulse response of feedback control systems. Mathematical preliminary is the Laplace transform. This part covers the basic feedback theory and stability, accuracy and quality of regulation.
The third part of the course includes the foundations of digital control. It presents mathematical preliminary (Z - transform), digital transfer function and difference equations. It deals with stability condition, stability analysis through bilinear transformation and PID - control algorithm through Z - transform.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Attendance and activity at the seminars are required. One absence can be compensated for by attending a seminar with another group in the same week, or by the elaboration of substitute tasks. Longer absence can be compensated for by the elaboration of compensatory tasks assigned by the tutor.
Aims
Analysis and design of linear continuous-time and discrete feedback control systems. Students will obtain the basic knowledge of automation, description and classification of control systems, determination of their characteristics. Students will be able to solve problems stability of control systems.
Study aids
Prerequisites and corequisites
Basic literature
Morris, K.: Introduction to Feedback Control. Academic Press, London, 2002. ISBN 0125076606.
Švarc, I., Matoušek, R., Šeda, M., Vítečková, M.: Automatické řízení. Akademické nakladatelství CERM, Brno, 2011. ISBN 978-80-214-4398-3.
Recommended reading
Švarc, I., Matoušek, R., Šeda, M., Vítečková, M.: Automatické řízení. Akademické nakladatelství CERM, Brno, 2011. ISBN 978-80-214-4398-3.
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Combinatorial and sequential logical circuits, programmable controllers
3. External and internal description of system Laplace transform
4. Characteristics in time domain, block diagram algebra, continuous regulation circuit
5. Frequency transfer, frequency response, classification of regulation elements
6. Stability of linear feedback systems, stability criteria, accuracy of regulation
7. Synthesis of continuous regulation circuit
8. Criteria of regulation quality
9. Description of discrete regulation circuit, Z-transform, discrete characteristics in time domain
10. Discrete regulation circuit, discrete frequency transfer and characteristics
11. Stability of discrete regulation circuit, stability criteria of discrete regulation circuits
12. Synthesis of discrete regulation circuit I
13. Synthesis of discrete regulation circuit II
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Logic control (control of the sequential circuit using a programmable logic controller).
3. Continuous linear control (control of the regulation circuit by a DC motor).
4. Continuous linear control (regulation of heating system).
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Continuous linear control (differential equation, transfer, impulse response and unit step response function, impulse and unit step characteristic, simulation in Matlab-Simulink).
3. Continuous linear control (frequency transfer, frequency characteristic in complex plane, frequency characteristics in logarithmic coordinates - simulation).
4. Continuous linear control (block diagram algebra, controllers, regulation circuit - simulation).
5. Continuous linear control (stability of regulation circuit - simulation).
6. Continuous linear control (synthesis of regulation circuits - calculation, simulation).
7. Discrete control (conversion between continuous and discrete system, characteristics of discrete systems - simulation).
8. Discrete control (digital controller, stability of discrete regulation circuit - simulation).
9. Test in written form., credit.
Elearning