Course detail
Virtual Prototypes
FSI-QVPAcad. year: 2023/2024
Virtual prototypes significantly reduce the time for motor vehicles development. Prototypes enable to prove and optimize vehicle properties before a real prototype is made . Students in this course will be made familiar with theoretical but also practical knowledge in this field. Software ADAMS was chosen for the practical part of the course, as it is one of the most widely used software for vehicle dynamics analysis.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Mastering fundaments of lectured problems and practical realizations of computations using computer technology and software tools, knowledge applying is examined on assigned problems, individual elaboration of the assigned tasks without fundamental deficits. Continuous evaluation is made at seminars.
Examination:
Examination is based on evaluation of knowledge of fundamental problems, ways of solutions and its applications in exercises.
The exam consists of a written part (test) and an oral part. Final evaluation consists of: 1. Evaluation of the work on seminars (elaborated tasks). 2. Result of the writing part of the exam (test). 3. Result of the oral part of the exam.
Attendance at seminars is obligatory, checked by a teacher. The way of compensation of absence is solved individually with a course provider.
Aims
Students will have a clear idea of which problems are possible to solve with the multi-body software, what data are necessary, what outputs they are able to get. Students will also acquire the necessary knowledge to enable them to independently create multi-body models using software tools.
Study aids
Prerequisites and corequisites
Basic literature
ADAMS/View. [on-line Adams software manual] MSC.Software Corporation. (EN)
BLUNDELL, M., HARTY, D. The multibody systems approach to vehicle dynamics. Second edition. Boston, MA: Elsevier, 2015. ISBN 978-008-0994-253. (EN)
SCHIEHLEN, W. (ed.) Multibody Systems Handbook. Berlin: Springer-Verlag, 1990 (EN)
STEJSKAL, V., VALÁŠEK, M. Kinematics and dynamics of machinery. Marcel Dekker, Inc. 1996. ISBN 0-8247-9731-0 (EN)
Recommended reading
Getting Started Using ADAMS/View. [on-line Adams software tutorial] MSC.Software Corporation. (EN)
PACEJKA, Hans B. Tire and vehicle dynamics. Third Edition. Amsterdam: Elsevier, 2012. ISBN 9780080970165. (EN)
Road vehicles - Vehicle dynamics and road-holding ability – Vocabulary, ISO8855 : 2011 (E/F), International Organization for Standardization, Switzerland (EN)
SCHIEHLEN, W. (ed.) Dynamics of High-Speed Vehicles. Wien-New York: Springer-Verelag, 1982 (EN)
STEJSKAL, V., VALÁŠEK, M. Kinematics and dynamics of machinery. Marcel Dekker, Inc. 1996. ISBN 0-8247-9731-0 (EN)
Elearning
Classification of course in study plans
- Programme N-ADI-P Master's 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Basic tapes of models
3. Basic elements of MB system simulation software and modelling process
4. Reference frames, location and orientations methods
5. Closed kinematic chains - Redundant coordinate problem
6. Numerical Solution - Nonlinear system of Equations and System of ordinary Differential Equations
7. Number of Degrees of Freedom - Impact on Modelling
8. Analysis
9. Software Solution and new trends
10. Special Modelling Elements (Tyres)
Computer-assisted exercise
Teacher / Lecturer
Syllabus
Students solve problem under direct guidance of lecturer and have at disposal tutorial
2. Individual problems solving - Five Link Suspension (8th – 12th week)
Students solve problem individually and could consult with lecturer.
3. Overview of ADAMS modules (13th week)
Elearning