Course detail

Driving Mechanisms

FSI-QHLAcad. year: 2023/2024

Objective of the Drive Mechanisms course is to acquaint students with basic concepts and layout of propulsion systems of passenger and utility vehicles with conventional as well as hybrid and electric drives. Mechanisms of combustion engines. Kinematics and dynamics of the drive mechanisms. Internal and external forces of combustion engines. Engine torque, harmonic analysis. Forces affecting the bearings of a piston machine. Balancing of inertia forces and of line engine torque, use of balancing shafts. Dynamics of V-engines and engines with unconventional power train arrangement. Irregularity of combustion engine running, design of flywheel. Cam mechanisms. Hybrid and electric drive of vehicles.

Language of instruction


Number of ECTS credits


Mode of study

Not applicable.

Entry knowledge

Matrix calculus, differential and integral calculus, differential equations. Technical mechanics, kinematics, dynamics, elasticity and strength. Fourier analysis.

Rules for evaluation and completion of the course

Requirements for Course-unit credit award:
The orientation within problems discussed and the ability of solving them, examined by working-out assigned tasks without significant mistakes. Continuous study checking is carried out together with given tasks verification.
The exam verifies and evaluates the knowledge of physical fundamentals of presented problems, theirs mathematical description on a presented level and application to solved tasks. The exam consists of a written part (test) and if necessary an oral part.

Final evaluation consists of:
1. Evaluation of the work on seminars (elaborated tasks).
2. Result of the writing part of the exam (test).
3. The result of the oral exam if necessary.
Attendance in seminars is obligatory, checked by a teacher. The way compensation of absence is solved individually with a course provider.


Learning outcomes of the course Driving Mechanisms is to acquaint students with current concepts of propulsion systems with combustion engines as well as with hybrid and electric drives and computational models for determining dynamic force and torque effects in this systems. These computational models are the primary tool for choosing the optimal driveline design and construction of modern passenger and commercial vehicles.
The subject Driving Mechanisms enables students to learn of vehicle driving mechanisms arrangement and computational models for determination the course of internal and external forces and torque, optimal driving mechanism configuration design of in-line, V- and non-conventional arrangement engines together with engine revolution non-uniformity analysis and vibration of powertrains.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

DAVITASSHVILI, Nodar a Valeh BAKHSHALIEV. Dynamics of Crank-Piston Mechanisms. Springer, 2016. ISBN 981100322X. (EN)
ADAMS, Maurice L. Bearings: basic concepts and design applications. Boca Raton: CRC Press, 2017. ISBN 9781138049086. (EN)
NORTON, Robert L. Cam design and manufacturing handbook. New York: Industrial Press, c2002. ISBN 0-8311-3122-5.
HAYES, John G. a Gordon A. GOODARZI. Electric powertrain: energy systems, power electronics & drives for hybrid, electric & fuel cell vehicles. Hoboken, NJ: John Wiley, 2018. ISBN 978-1-119-06364-3. (EN)

Recommended reading

Internal combustion engine handbook: basics, components, systems, and perspectives, second edition. Warrendale, PA: SAE International, 2016. ISBN 9780768080247. (EN)
HEISLER, Heinz. Advanced engine technology. Warrendale, PA: SAE International, c1995. ISBN 1560917342. (EN)
Píštěk, V.: Aplikovaná mechanika. Učební text FSI VUT v Brně. (CS)
ZIMA, Stefan. Kurbeltriebe: Konstruktion, Berechnung und Erprobung von den Anfängen bis heute. 2. vyd. Wiesbaden: Vieweg, 1999. ISBN 3-528-13115-2. (DE)
FUCHS, Anton: Automotive NVH technology. New York, NY: Springer Berlin Heidelberg, 2015. ISBN 978-3-319-24053-4. (EN)


Classification of course in study plans

  • Programme N-ADI-P Master's, 1. year of study, winter semester, compulsory-optional

Type of course unit



26 hours, optionally

Teacher / Lecturer


1. Mechanisms of power units and their computational models. Kinematics of centric crank mechanism. Kinematics of eccentric crank mechanism, mechanisms with connecting rod.
2. Dynamics of crank mechanism, computational models, internal and external forces.
3. Torque of piston machines, harmonic components, uneven running, flywheel.
4. Balancing of inertial forces and moments in the crank mechanism, balancing units.
5. Dynamics of crank mechanism of engines with a small number of cylinders.
6. Dynamics of the crank mechanism of in-line piston machines.
7. Dynamics of crank mechanism of fork engines, unconventional mechanisms.
8. Oscillations of drives with reciprocating machines, natural frequencies, forced oscillations.
9. Dynamics of automobile drives with gears, two-mass flywheel. Tuning of dynamic drive systems.
10. Dynamic vibration dampers in automotive technology. Pendulum vibration eliminators.
11. Cam mechanisms, kinematics and dynamics of cam mechanisms.
12. Flexible bearing of drive units, center of elasticity, main axes of elasticity.
13. Drivetrain of vehicles with hybrid and electric drives, active vibration damping. 

Computer-assisted exercise

26 hours, compulsory

Teacher / Lecturer


01. Effective engineering computational tools, computational technology.
02. Computational tools in the branch, computational Matlab software.
03. Matlab utilization, data file handling, data visualization.
04. Centric crank mechanism, course of kinematic quantities.
05. Kinematic quantities of eccentric crank mechanism.
06. Primary and secondary forces in crank mechanism, engine torque.
07. Engine p-alfa diagram, forces on components of cranktrain.
08. Numerical Fourier analysis of engine torque, harmonic orders.
09. Balancing of single-cylinder engine and multi-cylinder in-line engines.
10. Balancing of V-engines.
11. Cams and their classification.
12. Course of kinematic quantities of engine cam mechanisms.
13. Vibration of powertrains, computational models and possibilities of vibration damping.