Course detail
Organic Nanostructures at Inorganic Surfaces
FSI-9ONAAcad. year: 2022/2023
The emphasis is laid on understanding of physical and chemical properties of organic -inorganic interfaces: structure and morphology of organic layers/nanostructures, electronic band alignment, substrate-adsorbate charge transfer, optical properties.
1. Review of an essential knowledge from solid state physics, physical chemistry and surface science.
2. Physics and chemistry of surfaces and interfaces. Prototypical metal-metal, metal-semiconductor interfaces.
3. Molecular layers on solid surfaces: formation of interface in vacuum and liquid, elementary processes – adsorption, bonding, diffusion. Influence of kinetics and thermodynamics; self-assembly.
4. Electronic, magnetic and optical properties: electronic level alignment, charge transfer, magnetic interaction and screening.
5. Self-assembled monolayers (SAM): formation, control and functional properties. Colloidal nanoparticles. Molecular self-assembly on solid surfaces.
6. Experimental methods for determination of structural, chemical, electronic and optical properties of organic-inorganic interfaces.
7. Devices featuring organic layers and nanostructures.
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
H. Ibach: Physics of Surfaces and Interfaces, Springer-Verlag, Berlin Heidelberg, 2010. (EN)
H. Lüth: Solid Surfaces, Interfaces and Thin Films, Springer verlag, Berlin Heidelberg, 2015. (EN)
Review papers: (4.1) Y. Yin, P. Alivisatos: Colloidal nanocrystal synthesis and the organic–inorganic interface, Nature 437, 2005, 664. (4.2) S.M. Barlow, R. Raval: Complex organic molecules at metal surfaces: bonding, organisation and chirality, Surf. Sci Rep. 50, 2003, 201. (4.3) J. A. A. W. Elemans, S. Lei, S. De Feyter: Molecular and Supramolecular Networks on Surfaces: From Two-Dimensional Crystal Engineering to Reactivity, Angew. Chem. Int. Ed. 48, 2009, 7298. (4.4) R. Otero, A.L. Vázquez de Parga, J.M. Gallego: Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces, Surf. Sci. Rep. 72, 2017, 105. (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
The emphasis is laid on understanding of physical and chemical properties of organic -inorganic interfaces: structure and morphology of organic layers/nanostructures, electronic band alignment, substrate-adsorbate charge transfer, optical properties.
1. Review of an essential knowledge from solid state physics, physical chemistry and surface science.
2. Physics and chemistry of surfaces and interfaces. Prototypical metal-metal, metal-semiconductor interfaces.
3. Molecular layers on solid surfaces: formation of interface in vacuum and liquid, elementary processes – adsorption, bonding, diffusion. Influence of kinetics and thermodynamics; self-assembly.
4. Electronic, magnetic and optical properties: electronic level alignment, charge transfer, magnetic interaction and screening.
5. Self-assembled monolayers (SAM): formation, control and functional properties. Colloidal nanoparticles. Molecular self-assembly on solid surfaces.
6. Experimental methods for determination of structural, chemical, electronic and optical properties of organic-inorganic interfaces.
7. Devices featuring organic layers and nanostructures.