Course detail
Nonmetallic Materials
FSI-9NKMAcad. year: 2022/2023
The advanced course of non-metallic inorganic materials focused on the structure of ceramic materials and their physical and chemical properties. The topics of the course: diffusion in ceramic materials, mechanical behavior of ceramics, high temperature engineering ceramics, ceramic superionic conductors, ferroelectric ceramics, ferrimagnetic ceramics, semiconducting, polycrystalline ceramics, oxide superconductors, biomaterials for surgical usage.
Language of instruction
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Swain M. (volume editor): Structure and properties of ceramics, vol.11 of Materials Science and Technology, WCH, Weinheim 1994
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Mechanical behaviour of ceramics: elasticity, monocrystal and polycrystalline ceramics, influence of porosity. Fracture: fracture at the atomic level, crack initiation and propagation, plasticity, slip at the atomic level, dislocation glide in ceramics, high temperature plasticity, creep mechanisms, toughening mechanisms.
3. High temperature engineering ceramics, oxide ceramics (alumina, zirconia, mullite, cordierite), non-oxide ceramics (silicon nitride, silicon carbide, sialons), ceramic matrix composites.
4. Ceramic superionic conductors, theory of superionic conduction, oxygen-ion conductors (doped zirconia, ceria, hafnia, bismuth oxide, pyrochlores, beta-alumina), proton conductors (doped cerate, zirconate, beta-alumina).
5. Ferroelectric ceramics, crystal structure and ferroelectricity, high permitivity dielectrics, pyroelectric devices, piezoelectric devices, electrooptic devices, termistors.
6. Ferrimagnetic ceramics, basic concepts, ferrite crystal structures, microstructure and grain boundary chemistry.
7. Semiconducting polycrystalline ceramics, semiconductivity and grain boundary effects, electrostatic barriers and transport properties.
8. Oxide superconductors, crystal structures (cuprates, bismuth perovskites), properties, thin films.
9. Biomaterials for surgical use, physical properties and physiology of bone, compatibility between bioceramics and the physiological environment, main surgical alloys, biomedical polymers, biological glasses, ceramics (alumina, zirconia, titania, silicon nitride, composite aluminous ceramics, sialons, phosphate ceramics).