Course detail
Colloid and Surface Chemistry
FSI-9KPCAcad. year: 2022/2023
The course covers the fundamentals of colloid and surface science, including types of colloids and colloidal phenomena; the topics of the course: van der Waals Forces, electrical double layer, electrokinetic phenomena-electrophoresis, electrostatic and polymer-induced colloid stability, rheology of dispersion, surface tension and contact angle and adsorption from solution and monolayer formation.
Language of instruction
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
P.C. Hiemenz, R. Rajagopalan: Principles of colloid and surface chemistry, Marcel Dekker, New York 1997 (EN)
R.J. Hunter: Foundations of Colloid Science, Oxford University Press, Oxford 2001 (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Electrical double layer, surface charging, diffuse double layer, Debey - Hűckel approximation, electrical double layer, Gauy - Chapman theory, Stern adsorption.
3. Electro-kinetic phenomena – electrophoresis, mobilities of small ions and macroions in electric field, zeta potential (ZP): thick double layer, thin double layer, general theory for spherical particles, electroosmosis and streaming potential. Applications of electrokinetic phenomena (colloid stability, eletrophoretic deposition).
4. Electrostatic and polymer induced colloid stability, interparticle forces, stability of dispersion, theory of colloid stability (electrolyte concentration, critical coagulation concentration), theory of coagulation in dilute dispersion, polymer-colloid mixtures, interaction between polymer-coated particles.
5. Rheology of dispersion, Newton´s low of viscosity, viscometers, Navier-Stokes equation, deviations from the Einstein model, non-newtonian behaviour, viscosity of polymer solutions.
6. Surface tension and contact angle, surface tension and surface free energy, surface tension and capillarity, curved interface and phase equilibria, relation between surface tension and contact angle: Young equation, contact of liquids with porous solids (porosimetry).
7. Adsorption from solution and monolayer formation, thermodynamics of adsorption from solution, adsorption on solid surface: Langmuir equation, adsorption in the presence of an applied potential, electrocapillarity.