Course detail
Mathematics I
FSI-1M-AAcad. year: 2022/2023
Basic concepts of the set theory and mathematical logic.
Linear algebra: matrices, determinants, systems of linear equations.
Vector calculus and analytic geometry.
Differential calculus of functions of one variable: basic elementary functions, limits, derivative and its applications.
Integral calculus of functions of one variable: primitive function, proper integral and its applications.
Language of instruction
Number of ECTS credits
Mode of study
Department
Offered to foreign students
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
FORM OF EXAMINATIONS:
The exam has a written part (at most 75 points) and an oral part (at most 25 points)
WRITTEN PART OF EXAMINATION (at most 75 points)
In a 120-minute written test, students have to solve the following four problems:
Problem 1: Functions and their properties: domains, graphs (at most 10 points)
Problem 2: In linear algebra, analytic geometry (at most 20 points)
Problem 3: In differential calculus (at most 20 points)
Problem 4: In integral calculus (at most 25 points)
The above problems can also contain a theoretical question.
ORAL PART OF EXAMINATION (max 25 points)
• Discussion based on the written test: students have to explain how they solved each problem. Should the student fail to explain it sufficiently, the test results will not be accepted and will be classified by 0 points.
• Possible theoretic question.
• Possible simple problem to be solved straight away.
• The results achieved in the written tests in seminars may be taken into account within the oral examination.
FINAL CLASSIFICATION:
0-49 points: F
50-59 points: E
60-69 points: D
70-79 points: C
80-89 points: B
90-100 points: A
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Rektorys K. a spol.: Přehled užité matematiky I,II (SNTL, 1988)
Satunino, L.S., Hille, E., Etgen, J.G.: Calculus: One and Several Variables, Wiley 2002 (EN)
Sneall D.B., Hosack J.M.: Calculus, An Integrated Approach (EN)
Thomas G. B.: Calculus (Addison Wesley, 2003) (EN)
Thomas G.B., Finney R.L.: Calculus and Analytic Geometry (7th edition) (EN)
Recommended reading
Eliaš J., Horváth J., Kajan J.: Zbierka úloh z vyššej matematiky I, II, III, IV (Alfa Bratislava, 1985)
Mezník I. - Karásek J. - Miklíček J.: Matematika I pro strojní fakulty (SNTL 1992)
Nedoma J.: Matematika I. Část třetí, Integrální počet funkcí jedné proměnné (skriptum VUT)
Nedoma J.: Matematika I. Část druhá. Diferenciální a integrální počet funkcí jedné proměnné (skriptum VUT)
Nedoma J.: Matematika I., Část první. Algebra a geometrie (skriptum VUT)
Rektorys K. a spol.: Přehled užité matematiky I,II (SNTL, 1988)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Week 2: Matrices and determinants (determinants and their properties, regular and singular matrices, inverse to a matrix, calculating the inverse to a matrix using determinants), systems of linear algebraic equations (Cramer's rule, Gauss elimination method).
Week 3: More about systems of linear algebraic equations (Frobenius theorem, calculating the inverse to a matrix using the elimination method), vector calculus (operations with vectors, scalar (dot) product, vector (cross) product, scalar triple (box) product).
Week 4: Analytic geometry in 3D (problems involving straight lines and planes, classification of conics and quadratic surfaces), the notion of a function (domain and range, bounded functions, even and odd functions, periodic functions, monotonous functions, composite functions, one-to-one functions, inverse functions).
Week 5: Basic elementary functions (exponential, logarithm, general power, trigonometric functions and cyclometric (inverse to trigonometric functions), polynomials (root of a polynomial, the fundamental theorem of algebra, multiplicity of a root, product breakdown of a polynomial), introducing the notion of a rational function.
Week 6: Sequences and their limits, limit of a function, continuous functions.
Week 7: Derivative of a function (basic problem of differential calculus, notion of derivative, calculating derivatives, geometric applications of derivatives), calculating the limit of a function using L' Hospital rule.
Week 8: Monotonous functions, maxima and minima of functions, points of inflection, convex and concave functions, asymptotes, sketching the graph of a function.
Week 9: Differential of a function, Taylor polynomial, parametric and polar definitions of curves and functions (parametric definition of a derivative, transforming parametric definitions into polar ones and vice versa).
Week 10: Primitive function (antiderivative) (definition, properties and basic formulas), integrating by parts, method of substitution.
Week 11: Integrating rational functions (no complex roots in the denominator), calculating a primitive function by the method of substitution in some of the elementary functions.
Week 12: Riemann integral (basic problem of integral calculus, definition and properties of the Riemann integral), calculating the Riemann integral (Newton' s formula).
Week 13: Applications of the definite integral (surface area of a plane figure, length of a curve, volume and lateral surface area of a rotational body), improper integral.
Exercise
Teacher / Lecturer
Syllabus
Computer-assisted exercise
Teacher / Lecturer
Syllabus
Elearning