Course detail

Practicum in Mathematics for Informatics 2

FP-PMILAcad. year: 2022/2023

Obsah tohoto praktika odpovídá předmětu Matematika 2 a dává studentům možnost se podrobněji seznámit s praktickým řešením konkrétních úloh, procvičit si obtížnější partie a překonat obtíže pří zvládání učiva.

Language of instruction

Czech

Number of ECTS credits

Mode of study

Not applicable.

Learning outcomes of the course unit

Získané vědomosti a praktické matematické dovednosti zejména budou oporou pro získávání vědomostí a rozšiřování dovedností v oborech s ekonomickým zaměřením a pro korektní využívání matematických software a dále budou důležitým východiskem pro osvojování nových poznatků v navazujících předmětech matematického charakteru.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Cvičení jsou zaměřena na praktické výpočty a aplikační úlohy.

Assesment methods and criteria linked to learning outcomes

Requirements for credit:
- fulfillment of individual tasks and written assignments,
- successful completion of control tests during the semester

Course curriculum

1. Posloupnosti (určení základních vlastností posloupnosti reálných čísel -omezenost a monotonii, výpočet nebo odhad limity posloupnosti)
2. Derivace 1.řádu (výpočet derivace funkce s využitím obecných pravidel a vzorců derivací elementárních funkcí)
3. Derivace 1. a vyšších řádů (výpočet diferenciálu a jeho použití, výpočet derivace vyšších řádů, l´Hospitalovo pravidlo)
4. Průběh funkce I (určení intervalů monotonie, výpočet lokálních a absolutních extrémů funkce)
5. Průběh funkce II (určení intervalů konvexnosti , konkávnosti a inflexních bodů; výpočet asymptot funkce, úplný popis chování funkce včetně náčrtu jejího grafu)
6. Neurčitý integrál (použití vlastností a základních pravidel pro výpočet integrálů)
7. Metody integrace (použití metod per partes a substituční, integrace jednoduchých racionálních funkcí)
8. Určitý integrál (užití vlastností a základních pravidel pro výpočet, další aplikace, konvergence a příp. výpočet nevlastního integrálu)
9. Obyčejné diferenciální rovnice (obecné a partikulární řešení rovnice se separovanými proměnnými)
10. Lineární diferenciální rovnice 1. řádu (řešení homogenní a nehomogenní rovnice, metoda variace konstanty)
11. Funkce dvou proměnných I (definiční obory, grafy jednodušších funkcí 2 proměnných a jeho řezy, poruchy spojitosti, výpočty parciálních derivací 1. řádu)
12. Funkce dvou proměnných II (výpočty parciálních derivací vyšších řádů, určení gradientu a Hessovy matice funkce 2 proměnných)
13. Extrémy funkce dvou proměnných (výpočet stacionárních bodů a určení jejich charakteru – lokální extrém, určení absolutní ch a vázaných extrémů – Lagrangeova metoda)

Work placements

Not applicable.

Aims

Cílem předmětu je zopakování, upevnění a utřídění poznatků získaných na přednášce a cvičení v předmětu Matematika II a rozvíjení dovednosti studentů řešit samostatně úlohy ze všech probíraných tematických okruhů. Studenti budou chápat a budou umět řešit vybrané aplikace matematiky v ekonomii, resp. informatice. Studenti budou seznámení s českou a anglickou odbornou terminologií.

Specification of controlled education, way of implementation and compensation for absences

Within the exercises the students complete 10-minute written tests with the specification of the subject areas. To prepare for them, to evaluate the tests and consultations, e-learning is used in which students have their own
electronic materials available, including control-solved examples. The student is awarded a credit after successful completion (with at least 50% of successfully solved examples).

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

MAROŠOVÁ, M. - MEZNÍK, I.: Cvičení z matematiky I., 2. vydání, Brno 2008, FP VUT v Brně, 144s, ISBN 978-80-214-3724-1
MEZNÍK, I. Diskrétní matematika pro užitou informatiku, Brno 2013, CERM s.r.o., 185 s, ISBN: 978-80-214-4761- 5
MEZNÍK, I.: Matematika I, , 9. vydání, Brno 2011, FP VUT v Brně, 150s, ISBN 978-80-214-3725-8
MEZNÍK, I.: Matematika II., 11.vydání, Brno 2009, CERM s.r.o., 105s, ISBN 978-80-214-3816-3

Recommended reading

FECENKO, J.: Matematika. 2.vydání, Ekonóm, Bratislava 1995, 377s, ISBN 80-225-0675-3
JACQUES, I.: Mathematics for economics and business. Second edition. Addison-Wesley, Wokingham 1994. 485s. ISBN 0-201-42769-9
MEZNÍK, I.- KARÁSEK, J.- MIKLÍČEK, J.: Matematika I pro strojní fakulty, 1. vydání, SNTL, Praha 1992, 502s, ISBN 80–03–00313-X

Classification of course in study plans

  • Programme BAK-MIn-D Bachelor's

    branch BAK-MIn , 1 year of study, summer semester, elective

Type of course unit

 

Exercise

26 hod., optionally

Teacher / Lecturer

Syllabus

  1. Diferenciál a derivace vyšších řádů (diferenciál a jeho použití, derivace vyšších řádů, l´Hospitalovo pravidlo)
  2. Průběh funkce I (monotonie, lokální a absolutní extrémy funkce, konvexnost a konkávnost, asymptoty funkce)
  3. Průběh funkce II (úplný popis chování funkce)
  4. Neurčitý integrál (smysl, vlastnosti, základní pravidla pro výpočet)
  5. Metody integrace I (metoda per partes a substituční)
  6. Metody integrace II (rozklad na parciální zlomky, integrace racionálních lomených funkcí)
  7. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet)
  8. Aplikace určitého integrálu
  9. Funkce více proměnných a parciální derivace (graf a jeho řezy, parciální derivace, diferenciál)
  10. Extrémy funkcí více proměnných (parciální derivace vyšších řádů, extrémy lokální a na kompaktních množinách)
  11. Vázané extrémy funkcí více proměnných
  12. Diferenciální rovnice 1. řádu se separovanými proměnnými
  13. Lineární diferenciální rovnice 1. řádu